Matches in SemOpenAlex for { <https://semopenalex.org/work/W794365283> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W794365283 abstract "State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors)." @default.
- W794365283 created "2016-06-24" @default.
- W794365283 creator A5044956473 @default.
- W794365283 date "2011-01-01" @default.
- W794365283 modified "2023-09-27" @default.
- W794365283 title "An Empirical State Error Covariance Matrix for Batch State Estimation" @default.
- W794365283 hasPublicationYear "2011" @default.
- W794365283 type Work @default.
- W794365283 sameAs 794365283 @default.
- W794365283 citedByCount "0" @default.
- W794365283 crossrefType "journal-article" @default.
- W794365283 hasAuthorship W794365283A5044956473 @default.
- W794365283 hasConcept C105795698 @default.
- W794365283 hasConcept C106487976 @default.
- W794365283 hasConcept C11413529 @default.
- W794365283 hasConcept C126372606 @default.
- W794365283 hasConcept C148893098 @default.
- W794365283 hasConcept C155512373 @default.
- W794365283 hasConcept C159985019 @default.
- W794365283 hasConcept C178650346 @default.
- W794365283 hasConcept C180877172 @default.
- W794365283 hasConcept C185142706 @default.
- W794365283 hasConcept C192562407 @default.
- W794365283 hasConcept C19619285 @default.
- W794365283 hasConcept C28826006 @default.
- W794365283 hasConcept C33923547 @default.
- W794365283 hasConcept C48103436 @default.
- W794365283 hasConcept C83042196 @default.
- W794365283 hasConceptScore W794365283C105795698 @default.
- W794365283 hasConceptScore W794365283C106487976 @default.
- W794365283 hasConceptScore W794365283C11413529 @default.
- W794365283 hasConceptScore W794365283C126372606 @default.
- W794365283 hasConceptScore W794365283C148893098 @default.
- W794365283 hasConceptScore W794365283C155512373 @default.
- W794365283 hasConceptScore W794365283C159985019 @default.
- W794365283 hasConceptScore W794365283C178650346 @default.
- W794365283 hasConceptScore W794365283C180877172 @default.
- W794365283 hasConceptScore W794365283C185142706 @default.
- W794365283 hasConceptScore W794365283C192562407 @default.
- W794365283 hasConceptScore W794365283C19619285 @default.
- W794365283 hasConceptScore W794365283C28826006 @default.
- W794365283 hasConceptScore W794365283C33923547 @default.
- W794365283 hasConceptScore W794365283C48103436 @default.
- W794365283 hasConceptScore W794365283C83042196 @default.
- W794365283 hasLocation W7943652831 @default.
- W794365283 hasOpenAccess W794365283 @default.
- W794365283 hasPrimaryLocation W7943652831 @default.
- W794365283 hasRelatedWork W1497367596 @default.
- W794365283 hasRelatedWork W1528461492 @default.
- W794365283 hasRelatedWork W1973356140 @default.
- W794365283 hasRelatedWork W2045024301 @default.
- W794365283 hasRelatedWork W2049438561 @default.
- W794365283 hasRelatedWork W2088805718 @default.
- W794365283 hasRelatedWork W2121204183 @default.
- W794365283 hasRelatedWork W2121938805 @default.
- W794365283 hasRelatedWork W2154233250 @default.
- W794365283 hasRelatedWork W2235380014 @default.
- W794365283 hasRelatedWork W2388762513 @default.
- W794365283 hasRelatedWork W246221101 @default.
- W794365283 hasRelatedWork W2556839325 @default.
- W794365283 hasRelatedWork W2594618066 @default.
- W794365283 hasRelatedWork W2996717677 @default.
- W794365283 hasRelatedWork W3048436498 @default.
- W794365283 hasRelatedWork W768720073 @default.
- W794365283 hasRelatedWork W789380386 @default.
- W794365283 hasRelatedWork W1618872034 @default.
- W794365283 hasRelatedWork W2149330336 @default.
- W794365283 isParatext "false" @default.
- W794365283 isRetracted "false" @default.
- W794365283 magId "794365283" @default.
- W794365283 workType "article" @default.