Matches in SemOpenAlex for { <https://semopenalex.org/work/W795367940> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W795367940 abstract "A central problem in the theory of cosmic ray acceleration at supernova shock fronts is the generation of turbulent magnetic fields needed to scatter particles across a shock front. In this paper we build on previous studies [1], [2] into the effect of streaming cosmic rays produced by the outer shocks of supernova remnants on the stochastic component of the magnetic field. A three dimensional, MHD code has been constructed which demonstrates the nonlinear growth of the turbulent field. Introduction There is clear radio, X-ray and gamma ray observational evidence that electrons, and probably protons, are accelerated to energies in excess of 10 eV in supernova remnants ( [1]). Diffusive shock acceleration provides the most natural explanation for the spectral shape. This process requires the presence of magnetic field turbulence that repeatedly scatters particles across the shock front. The timescale for acceleration is constrained by the level of the turbulence, through the particle’s diffusion coefficient. Bell ( [1]) has recently shown that, in the MHD limit, particle anisotropy upstream of the shock can excite turbulence many orders of magnitude greater than the background interstellar medium value thereby lowering the particle diffusion coefficient and making the process more rapid than previously though. In this paper we confirm Bell’s linear analysis by using kinetic theory ( [3]) and present some intial results from a code using a three dimensional Godunov scheme. Linear Instability in Kinetic Theory The linear dispersion relation for circularly polarised transverse waves propagating parallel to the zeroth order magnetic field is ck ω2 −1 = ∑ s χs(k,ω) (1) where the summation is over species f0s with charge qs and χs = 4πqs ω2 ∫ d p v⊥p⊥ ω ±ωcs − kv‖ [ (ω − kv‖) ∂ f0s ∂ p2⊥ + kv‖ ∂ f0s ∂ p2‖ ] (2) 33rd EPS Conference on Plasma Phys. Rome, 19 23 June 2006 ECA Vol.30I, P-4.056 (2006) is the susceptibility of each plasma component. We assume the plasma has three components; (i) cold background protons of density np, with a small drift velocity up along the mean magnetic field, (ii) cold background electrons with small drift velocity ue, density ne, also drifting along the mean magnetic field and (iii) anisotropic cosmic rays, for simplicity consists only of protons We also require the plasma to have overall charge neutrality, ∑s qsns = 0, and zero net current, ∑s qsnsus = 0. If the background proton and electron distributions are Maxwellian with drifts up and ue respectively, the susceptibility of the background plasma is χbg = Σ ωsω 2 ps ω(ωs ±ωcs) [ (ωs ±ωcs) √ 2kVts Z ( (ωs ±ωcs) √ 2kVts )] (3) where ωs = ω − kus denotes the doppler shifted frequency of each species, ωps the plasma frequency, ωcs the cyclotron and Z(ζ ) is the plasma dispersion function. For a cold plasma (ζ ≫ 1) and waves of short wavelength ωs ≪ ωc, the background susceptibility is ωχbg = c cA [ ω i ∓ kV 2 ti ωci ωi ∓ ωcikJ 1 cr ni ] (4) in agreement with Achterberg [3]. J cr = ncrucr − ωk ncr is related to the cosmic ray flux density. The J cr term results from the background plasma attempting to compensate for the CR current and corresponds to the return current [1, 2, 4]. The CR distribution is expressed as the first two terms in the Chapman-Enskog expansion fcr(p,μ) = f0(p)+ μ f1(p) giving the susceptibility of the CRs as, with λ = eB0/kpc, ωχcr ≈± c cA ωcik ni ( 1− ω 2 k2c2 )1/2[∫ d p4π p 1 3 v f1σp ] w (5) where σp(λ ) = 3 4 λ (1−λ ) [" @default.
- W795367940 created "2016-06-24" @default.
- W795367940 creator A5018965696 @default.
- W795367940 creator A5026677273 @default.
- W795367940 creator A5029806759 @default.
- W795367940 date "2006-01-01" @default.
- W795367940 modified "2023-09-25" @default.
- W795367940 title "The Nonlinear Amplification of Magnetic Fields by Cosmic Rays at Supernova Remnant Shocks" @default.
- W795367940 doi "https://doi.org/10.21427/dgzw-f436" @default.
- W795367940 hasPublicationYear "2006" @default.
- W795367940 type Work @default.
- W795367940 sameAs 795367940 @default.
- W795367940 citedByCount "0" @default.
- W795367940 crossrefType "journal-article" @default.
- W795367940 hasAuthorship W795367940A5018965696 @default.
- W795367940 hasAuthorship W795367940A5026677273 @default.
- W795367940 hasAuthorship W795367940A5029806759 @default.
- W795367940 hasConcept C111309251 @default.
- W795367940 hasConcept C115260700 @default.
- W795367940 hasConcept C121332964 @default.
- W795367940 hasConcept C126322002 @default.
- W795367940 hasConcept C127592171 @default.
- W795367940 hasConcept C196558001 @default.
- W795367940 hasConcept C2778339168 @default.
- W795367940 hasConcept C2781300812 @default.
- W795367940 hasConcept C30475298 @default.
- W795367940 hasConcept C31532427 @default.
- W795367940 hasConcept C44870925 @default.
- W795367940 hasConcept C57879066 @default.
- W795367940 hasConcept C62520636 @default.
- W795367940 hasConcept C70477161 @default.
- W795367940 hasConcept C71924100 @default.
- W795367940 hasConcept C75183268 @default.
- W795367940 hasConceptScore W795367940C111309251 @default.
- W795367940 hasConceptScore W795367940C115260700 @default.
- W795367940 hasConceptScore W795367940C121332964 @default.
- W795367940 hasConceptScore W795367940C126322002 @default.
- W795367940 hasConceptScore W795367940C127592171 @default.
- W795367940 hasConceptScore W795367940C196558001 @default.
- W795367940 hasConceptScore W795367940C2778339168 @default.
- W795367940 hasConceptScore W795367940C2781300812 @default.
- W795367940 hasConceptScore W795367940C30475298 @default.
- W795367940 hasConceptScore W795367940C31532427 @default.
- W795367940 hasConceptScore W795367940C44870925 @default.
- W795367940 hasConceptScore W795367940C57879066 @default.
- W795367940 hasConceptScore W795367940C62520636 @default.
- W795367940 hasConceptScore W795367940C70477161 @default.
- W795367940 hasConceptScore W795367940C71924100 @default.
- W795367940 hasConceptScore W795367940C75183268 @default.
- W795367940 hasLocation W7953679401 @default.
- W795367940 hasOpenAccess W795367940 @default.
- W795367940 hasPrimaryLocation W7953679401 @default.
- W795367940 hasRelatedWork W1521485834 @default.
- W795367940 hasRelatedWork W1542924082 @default.
- W795367940 hasRelatedWork W1610163808 @default.
- W795367940 hasRelatedWork W1656341900 @default.
- W795367940 hasRelatedWork W1864128177 @default.
- W795367940 hasRelatedWork W2000648213 @default.
- W795367940 hasRelatedWork W2098012226 @default.
- W795367940 hasRelatedWork W2141175196 @default.
- W795367940 hasRelatedWork W2285386724 @default.
- W795367940 hasRelatedWork W2793686789 @default.
- W795367940 hasRelatedWork W2979754338 @default.
- W795367940 hasRelatedWork W2999608883 @default.
- W795367940 hasRelatedWork W3098665358 @default.
- W795367940 hasRelatedWork W3099681467 @default.
- W795367940 hasRelatedWork W3102182700 @default.
- W795367940 hasRelatedWork W3102208626 @default.
- W795367940 hasRelatedWork W3102342337 @default.
- W795367940 hasRelatedWork W3102429944 @default.
- W795367940 hasRelatedWork W3103656260 @default.
- W795367940 isParatext "false" @default.
- W795367940 isRetracted "false" @default.
- W795367940 magId "795367940" @default.
- W795367940 workType "article" @default.