Matches in SemOpenAlex for { <https://semopenalex.org/work/W79598241> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W79598241 endingPage "144" @default.
- W79598241 startingPage "135" @default.
- W79598241 abstract "A Padé approximant (PA) to a function f is a rational function P m ∕ Q n matching the power expansion of f at least up to the (m + n)th power. On the contrary, the convergents of the Stieltjes, Jacobi, or Thiele continued fractions (CF) of f define all PA of f. However, the convergents of general CF are not necessarily PA. In this work, we present the rules stating when the convergents of CF are consistent with PA. The similar problem of compatible transformations of a variable and a function applied to PA was studied in [1]." @default.
- W79598241 created "2016-06-24" @default.
- W79598241 creator A5048534008 @default.
- W79598241 creator A5050652808 @default.
- W79598241 date "2010-01-01" @default.
- W79598241 modified "2023-09-25" @default.
- W79598241 title "Compatibility of Continued Fraction Convergents with Padé Approximants" @default.
- W79598241 cites W2095486864 @default.
- W79598241 doi "https://doi.org/10.1007/978-1-4419-6594-3_10" @default.
- W79598241 hasPublicationYear "2010" @default.
- W79598241 type Work @default.
- W79598241 sameAs 79598241 @default.
- W79598241 citedByCount "2" @default.
- W79598241 countsByYear W795982412013 @default.
- W79598241 countsByYear W795982412014 @default.
- W79598241 crossrefType "book-chapter" @default.
- W79598241 hasAuthorship W79598241A5048534008 @default.
- W79598241 hasAuthorship W79598241A5050652808 @default.
- W79598241 hasConcept C134306372 @default.
- W79598241 hasConcept C159985019 @default.
- W79598241 hasConcept C167211080 @default.
- W79598241 hasConcept C192562407 @default.
- W79598241 hasConcept C20080352 @default.
- W79598241 hasConcept C27016315 @default.
- W79598241 hasConcept C2778648169 @default.
- W79598241 hasConcept C33923547 @default.
- W79598241 hasConcept C39613435 @default.
- W79598241 hasConcept C73905626 @default.
- W79598241 hasConcept C75190567 @default.
- W79598241 hasConcept C94375191 @default.
- W79598241 hasConceptScore W79598241C134306372 @default.
- W79598241 hasConceptScore W79598241C159985019 @default.
- W79598241 hasConceptScore W79598241C167211080 @default.
- W79598241 hasConceptScore W79598241C192562407 @default.
- W79598241 hasConceptScore W79598241C20080352 @default.
- W79598241 hasConceptScore W79598241C27016315 @default.
- W79598241 hasConceptScore W79598241C2778648169 @default.
- W79598241 hasConceptScore W79598241C33923547 @default.
- W79598241 hasConceptScore W79598241C39613435 @default.
- W79598241 hasConceptScore W79598241C73905626 @default.
- W79598241 hasConceptScore W79598241C75190567 @default.
- W79598241 hasConceptScore W79598241C94375191 @default.
- W79598241 hasLocation W795982411 @default.
- W79598241 hasLocation W795982412 @default.
- W79598241 hasLocation W795982413 @default.
- W79598241 hasOpenAccess W79598241 @default.
- W79598241 hasPrimaryLocation W795982411 @default.
- W79598241 hasRelatedWork W2027329747 @default.
- W79598241 hasRelatedWork W2030351933 @default.
- W79598241 hasRelatedWork W2049855857 @default.
- W79598241 hasRelatedWork W2064861013 @default.
- W79598241 hasRelatedWork W2161439882 @default.
- W79598241 hasRelatedWork W2363123232 @default.
- W79598241 hasRelatedWork W2502001023 @default.
- W79598241 hasRelatedWork W2750163079 @default.
- W79598241 hasRelatedWork W3034768556 @default.
- W79598241 hasRelatedWork W3094025629 @default.
- W79598241 isParatext "false" @default.
- W79598241 isRetracted "false" @default.
- W79598241 magId "79598241" @default.
- W79598241 workType "book-chapter" @default.