Matches in SemOpenAlex for { <https://semopenalex.org/work/W796041> ?p ?o ?g. }
- W796041 endingPage "383" @default.
- W796041 startingPage "368" @default.
- W796041 abstract "Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Restricted Boltzmann Machines (RBMs) are generative neural networks with these desired properties. We integrate an RBM into an EDA and evaluate the performance of this system in solving combinatorial optimization problems with a single objective. We assess how the number of fitness evaluations and the CPU time scale with problem size and complexity. The results are compared to the Bayesian Optimization Algorithm (BOA), a state-of-the-art multivariate EDA, and the Dependency Tree Algorithm (DTA), which uses a simpler probability model requiring less computational effort for training the model. Although RBM–EDA requires larger population sizes and a larger number of fitness evaluations than BOA, it outperforms BOA in terms of CPU times, in particular if the problem is large or complex. This is because RBM–EDA requires less time for model building than BOA. DTA with its restricted model is a good choice for small problems but fails for larger and more difficult problems. These results highlight the potential of using generative neural networks for combinatorial optimization." @default.
- W796041 created "2016-06-24" @default.
- W796041 creator A5017193501 @default.
- W796041 creator A5035443886 @default.
- W796041 creator A5040007777 @default.
- W796041 date "2017-01-01" @default.
- W796041 modified "2023-10-10" @default.
- W796041 title "Scalability of using Restricted Boltzmann Machines for combinatorial optimization" @default.
- W796041 cites W1595159159 @default.
- W796041 cites W1965714028 @default.
- W796041 cites W1973770389 @default.
- W796041 cites W1975682709 @default.
- W796041 cites W1980287119 @default.
- W796041 cites W1992206930 @default.
- W796041 cites W1994252941 @default.
- W796041 cites W2007598972 @default.
- W796041 cites W2010334716 @default.
- W796041 cites W2020999234 @default.
- W796041 cites W2036854326 @default.
- W796041 cites W2039568841 @default.
- W796041 cites W2050215344 @default.
- W796041 cites W2064164319 @default.
- W796041 cites W2070630412 @default.
- W796041 cites W2084961468 @default.
- W796041 cites W2096056204 @default.
- W796041 cites W2110325328 @default.
- W796041 cites W2116064496 @default.
- W796041 cites W2127764513 @default.
- W796041 cites W2136922672 @default.
- W796041 cites W2147768505 @default.
- W796041 cites W2154342596 @default.
- W796041 cites W2156896344 @default.
- W796041 cites W2157905995 @default.
- W796041 cites W2163166770 @default.
- W796041 cites W2168175751 @default.
- W796041 cites W2172081677 @default.
- W796041 doi "https://doi.org/10.1016/j.ejor.2016.06.066" @default.
- W796041 hasPublicationYear "2017" @default.
- W796041 type Work @default.
- W796041 sameAs 796041 @default.
- W796041 citedByCount "17" @default.
- W796041 countsByYear W7960412017 @default.
- W796041 countsByYear W7960412018 @default.
- W796041 countsByYear W7960412019 @default.
- W796041 countsByYear W7960412020 @default.
- W796041 countsByYear W7960412021 @default.
- W796041 countsByYear W7960412022 @default.
- W796041 countsByYear W7960412023 @default.
- W796041 crossrefType "journal-article" @default.
- W796041 hasAuthorship W796041A5017193501 @default.
- W796041 hasAuthorship W796041A5035443886 @default.
- W796041 hasAuthorship W796041A5040007777 @default.
- W796041 hasBestOaLocation W7960412 @default.
- W796041 hasConcept C11413529 @default.
- W796041 hasConcept C119857082 @default.
- W796041 hasConcept C126255220 @default.
- W796041 hasConcept C137836250 @default.
- W796041 hasConcept C144024400 @default.
- W796041 hasConcept C149923435 @default.
- W796041 hasConcept C154945302 @default.
- W796041 hasConcept C162500139 @default.
- W796041 hasConcept C2908647359 @default.
- W796041 hasConcept C33923547 @default.
- W796041 hasConcept C41008148 @default.
- W796041 hasConcept C48044578 @default.
- W796041 hasConcept C49284225 @default.
- W796041 hasConcept C52692508 @default.
- W796041 hasConcept C77088390 @default.
- W796041 hasConceptScore W796041C11413529 @default.
- W796041 hasConceptScore W796041C119857082 @default.
- W796041 hasConceptScore W796041C126255220 @default.
- W796041 hasConceptScore W796041C137836250 @default.
- W796041 hasConceptScore W796041C144024400 @default.
- W796041 hasConceptScore W796041C149923435 @default.
- W796041 hasConceptScore W796041C154945302 @default.
- W796041 hasConceptScore W796041C162500139 @default.
- W796041 hasConceptScore W796041C2908647359 @default.
- W796041 hasConceptScore W796041C33923547 @default.
- W796041 hasConceptScore W796041C41008148 @default.
- W796041 hasConceptScore W796041C48044578 @default.
- W796041 hasConceptScore W796041C49284225 @default.
- W796041 hasConceptScore W796041C52692508 @default.
- W796041 hasConceptScore W796041C77088390 @default.
- W796041 hasIssue "2" @default.
- W796041 hasLocation W7960411 @default.
- W796041 hasLocation W7960412 @default.
- W796041 hasLocation W7960413 @default.
- W796041 hasOpenAccess W796041 @default.
- W796041 hasPrimaryLocation W7960411 @default.
- W796041 hasRelatedWork W1058439126 @default.
- W796041 hasRelatedWork W1503012231 @default.
- W796041 hasRelatedWork W1513958355 @default.
- W796041 hasRelatedWork W1544849317 @default.
- W796041 hasRelatedWork W1982259447 @default.
- W796041 hasRelatedWork W2047098179 @default.
- W796041 hasRelatedWork W2124261928 @default.
- W796041 hasRelatedWork W2360241151 @default.
- W796041 hasRelatedWork W2496664933 @default.