Matches in SemOpenAlex for { <https://semopenalex.org/work/W79692902> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W79692902 endingPage "191" @default.
- W79692902 startingPage "182" @default.
- W79692902 abstract "The purpose of this work is to further study the relevance of accelerating the Monte-Carlo calculations for the gamma rays external radiotherapy through feed-forward neural networks. We have previously presented a parallel incremental algorithm that builds neural networks of reduced size, while providing high quality approximations of the dose deposit [4]. Our parallel algorithm consists in an optimized decomposition of the initial learning dataset (also called learning domain) in as much subsets as available processors. However, although that decomposition provides subsets of similar signal complexities, their sizes may be quite different, still implying potential differences in their learning times. This paper presents an efficient data extraction allowing a good and balanced training without any loss of signal information. As will be shown, the resulting irregular decomposition permits an important improvement in the learning time of the global network." @default.
- W79692902 created "2016-06-24" @default.
- W79692902 creator A5004763772 @default.
- W79692902 creator A5045786744 @default.
- W79692902 creator A5049008337 @default.
- W79692902 creator A5079004337 @default.
- W79692902 date "2011-01-01" @default.
- W79692902 modified "2023-10-09" @default.
- W79692902 title "Large Datasets: A Mixed Method to Adapt and Improve Their Learning by Neural Networks Used in Regression Contexts" @default.
- W79692902 cites W1490425935 @default.
- W79692902 cites W1503880870 @default.
- W79692902 cites W1523590985 @default.
- W79692902 cites W1535540078 @default.
- W79692902 cites W1795638400 @default.
- W79692902 cites W1977411239 @default.
- W79692902 cites W2017706032 @default.
- W79692902 cites W2026592854 @default.
- W79692902 cites W2061017013 @default.
- W79692902 cites W2078365413 @default.
- W79692902 cites W2153813915 @default.
- W79692902 cites W2505565444 @default.
- W79692902 cites W4244955408 @default.
- W79692902 doi "https://doi.org/10.1007/978-3-642-23957-1_21" @default.
- W79692902 hasPublicationYear "2011" @default.
- W79692902 type Work @default.
- W79692902 sameAs 79692902 @default.
- W79692902 citedByCount "1" @default.
- W79692902 countsByYear W796929022021 @default.
- W79692902 crossrefType "book-chapter" @default.
- W79692902 hasAuthorship W79692902A5004763772 @default.
- W79692902 hasAuthorship W79692902A5045786744 @default.
- W79692902 hasAuthorship W79692902A5049008337 @default.
- W79692902 hasAuthorship W79692902A5079004337 @default.
- W79692902 hasBestOaLocation W796929021 @default.
- W79692902 hasConcept C105795698 @default.
- W79692902 hasConcept C108583219 @default.
- W79692902 hasConcept C11413529 @default.
- W79692902 hasConcept C119857082 @default.
- W79692902 hasConcept C124681953 @default.
- W79692902 hasConcept C134306372 @default.
- W79692902 hasConcept C154945302 @default.
- W79692902 hasConcept C158154518 @default.
- W79692902 hasConcept C17744445 @default.
- W79692902 hasConcept C18903297 @default.
- W79692902 hasConcept C19499675 @default.
- W79692902 hasConcept C199360897 @default.
- W79692902 hasConcept C199539241 @default.
- W79692902 hasConcept C2779843651 @default.
- W79692902 hasConcept C33923547 @default.
- W79692902 hasConcept C36503486 @default.
- W79692902 hasConcept C41008148 @default.
- W79692902 hasConcept C50644808 @default.
- W79692902 hasConcept C83546350 @default.
- W79692902 hasConcept C86803240 @default.
- W79692902 hasConceptScore W79692902C105795698 @default.
- W79692902 hasConceptScore W79692902C108583219 @default.
- W79692902 hasConceptScore W79692902C11413529 @default.
- W79692902 hasConceptScore W79692902C119857082 @default.
- W79692902 hasConceptScore W79692902C124681953 @default.
- W79692902 hasConceptScore W79692902C134306372 @default.
- W79692902 hasConceptScore W79692902C154945302 @default.
- W79692902 hasConceptScore W79692902C158154518 @default.
- W79692902 hasConceptScore W79692902C17744445 @default.
- W79692902 hasConceptScore W79692902C18903297 @default.
- W79692902 hasConceptScore W79692902C19499675 @default.
- W79692902 hasConceptScore W79692902C199360897 @default.
- W79692902 hasConceptScore W79692902C199539241 @default.
- W79692902 hasConceptScore W79692902C2779843651 @default.
- W79692902 hasConceptScore W79692902C33923547 @default.
- W79692902 hasConceptScore W79692902C36503486 @default.
- W79692902 hasConceptScore W79692902C41008148 @default.
- W79692902 hasConceptScore W79692902C50644808 @default.
- W79692902 hasConceptScore W79692902C83546350 @default.
- W79692902 hasConceptScore W79692902C86803240 @default.
- W79692902 hasLocation W796929021 @default.
- W79692902 hasLocation W796929022 @default.
- W79692902 hasLocation W796929023 @default.
- W79692902 hasLocation W796929024 @default.
- W79692902 hasOpenAccess W79692902 @default.
- W79692902 hasPrimaryLocation W796929021 @default.
- W79692902 hasRelatedWork W1835907303 @default.
- W79692902 hasRelatedWork W2085384747 @default.
- W79692902 hasRelatedWork W2088166309 @default.
- W79692902 hasRelatedWork W2106071040 @default.
- W79692902 hasRelatedWork W2276587472 @default.
- W79692902 hasRelatedWork W2615795876 @default.
- W79692902 hasRelatedWork W4238976562 @default.
- W79692902 hasRelatedWork W4248323080 @default.
- W79692902 hasRelatedWork W4312133475 @default.
- W79692902 hasRelatedWork W4375867731 @default.
- W79692902 isParatext "false" @default.
- W79692902 isRetracted "false" @default.
- W79692902 magId "79692902" @default.
- W79692902 workType "book-chapter" @default.