Matches in SemOpenAlex for { <https://semopenalex.org/work/W797247193> ?p ?o ?g. }
- W797247193 abstract "We present a probabilistic model for tensor decomposition where one or more tensor modes may have side-information about the mode entities in form of their features and/or their adjacency network. We consider a Bayesian approach based on the Canonical PARAFAC (CP) decomposition and enrich this single-layer decomposition approach with a two-layer decomposition. The second layer fits a factor model for each layer-one factor matrix and models the factor matrix via the mode entities' features and/or the network between the mode entities. The second-layer decomposition of each factor matrix also learns a binary latent representation for the entities of that mode, which can be useful in its own right. Our model can handle both continuous as well as binary tensor observations. Another appealing aspect of our model is the simplicity of the model inference, with easy-to-sample Gibbs updates. We demonstrate the results of our model on several benchmarks datasets, consisting of both real and binary tensors." @default.
- W797247193 created "2016-06-24" @default.
- W797247193 creator A5016448581 @default.
- W797247193 creator A5029651089 @default.
- W797247193 creator A5078791969 @default.
- W797247193 date "2015-02-21" @default.
- W797247193 modified "2023-10-14" @default.
- W797247193 title "Leveraging Features and Networks for Probabilistic Tensor Decomposition" @default.
- W797247193 cites W1500188831 @default.
- W797247193 cites W1632866817 @default.
- W797247193 cites W1714642268 @default.
- W797247193 cites W1970055505 @default.
- W797247193 cites W2024165284 @default.
- W797247193 cites W2029721016 @default.
- W797247193 cites W2040006565 @default.
- W797247193 cites W2049588365 @default.
- W797247193 cites W2054323527 @default.
- W797247193 cites W2054553473 @default.
- W797247193 cites W205829674 @default.
- W797247193 cites W2064321206 @default.
- W797247193 cites W2064797228 @default.
- W797247193 cites W2072128103 @default.
- W797247193 cites W2096578014 @default.
- W797247193 cites W2096602764 @default.
- W797247193 cites W2099878672 @default.
- W797247193 cites W2112292531 @default.
- W797247193 cites W2117111086 @default.
- W797247193 cites W2117420919 @default.
- W797247193 cites W2117587045 @default.
- W797247193 cites W2128359436 @default.
- W797247193 cites W2138745909 @default.
- W797247193 cites W2140862024 @default.
- W797247193 cites W2158535911 @default.
- W797247193 cites W2163922914 @default.
- W797247193 cites W2171626009 @default.
- W797247193 cites W3104026554 @default.
- W797247193 doi "https://doi.org/10.1609/aaai.v29i1.9582" @default.
- W797247193 hasPublicationYear "2015" @default.
- W797247193 type Work @default.
- W797247193 sameAs 797247193 @default.
- W797247193 citedByCount "14" @default.
- W797247193 countsByYear W7972471932015 @default.
- W797247193 countsByYear W7972471932016 @default.
- W797247193 countsByYear W7972471932018 @default.
- W797247193 countsByYear W7972471932019 @default.
- W797247193 countsByYear W7972471932020 @default.
- W797247193 countsByYear W7972471932022 @default.
- W797247193 countsByYear W7972471932023 @default.
- W797247193 crossrefType "journal-article" @default.
- W797247193 hasAuthorship W797247193A5016448581 @default.
- W797247193 hasAuthorship W797247193A5029651089 @default.
- W797247193 hasAuthorship W797247193A5078791969 @default.
- W797247193 hasBestOaLocation W7972471931 @default.
- W797247193 hasConcept C106487976 @default.
- W797247193 hasConcept C107673813 @default.
- W797247193 hasConcept C111919701 @default.
- W797247193 hasConcept C11413529 @default.
- W797247193 hasConcept C121332964 @default.
- W797247193 hasConcept C124681953 @default.
- W797247193 hasConcept C154945302 @default.
- W797247193 hasConcept C155281189 @default.
- W797247193 hasConcept C158424031 @default.
- W797247193 hasConcept C158693339 @default.
- W797247193 hasConcept C159985019 @default.
- W797247193 hasConcept C17744445 @default.
- W797247193 hasConcept C18903297 @default.
- W797247193 hasConcept C192562407 @default.
- W797247193 hasConcept C199360897 @default.
- W797247193 hasConcept C199539241 @default.
- W797247193 hasConcept C202444582 @default.
- W797247193 hasConcept C2776214188 @default.
- W797247193 hasConcept C2776359362 @default.
- W797247193 hasConcept C2781039887 @default.
- W797247193 hasConcept C33724603 @default.
- W797247193 hasConcept C33923547 @default.
- W797247193 hasConcept C41008148 @default.
- W797247193 hasConcept C42355184 @default.
- W797247193 hasConcept C48372109 @default.
- W797247193 hasConcept C48677424 @default.
- W797247193 hasConcept C49937458 @default.
- W797247193 hasConcept C62520636 @default.
- W797247193 hasConcept C86803240 @default.
- W797247193 hasConcept C94375191 @default.
- W797247193 hasConcept C94625758 @default.
- W797247193 hasConceptScore W797247193C106487976 @default.
- W797247193 hasConceptScore W797247193C107673813 @default.
- W797247193 hasConceptScore W797247193C111919701 @default.
- W797247193 hasConceptScore W797247193C11413529 @default.
- W797247193 hasConceptScore W797247193C121332964 @default.
- W797247193 hasConceptScore W797247193C124681953 @default.
- W797247193 hasConceptScore W797247193C154945302 @default.
- W797247193 hasConceptScore W797247193C155281189 @default.
- W797247193 hasConceptScore W797247193C158424031 @default.
- W797247193 hasConceptScore W797247193C158693339 @default.
- W797247193 hasConceptScore W797247193C159985019 @default.
- W797247193 hasConceptScore W797247193C17744445 @default.
- W797247193 hasConceptScore W797247193C18903297 @default.
- W797247193 hasConceptScore W797247193C192562407 @default.
- W797247193 hasConceptScore W797247193C199360897 @default.
- W797247193 hasConceptScore W797247193C199539241 @default.