Matches in SemOpenAlex for { <https://semopenalex.org/work/W798545274> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W798545274 endingPage "124" @default.
- W798545274 startingPage "111" @default.
- W798545274 abstract "This evapaper is toluate the forecasting performance of three neural network(NN) approaches against ARIMA model using the famous time series analysis competition data. The first NN approach is to analyze the second Makridakis (M2) Competition Data using Multilayer Perceptron (MLP) that has been the most popular NN model in time series analysis. Since it is recently known that MLP suffers from bias/variance dilemma, two approaches are suggested in this study. The second approach adopts Cascade Correlation Network (CCN) that was suggested by Fahlman & Lebiere as an alternative to MLP. In the third approach, a time series is separated into two series using Noise Filtering Network (NFN) that utilizes autoassociative memory function of neural network. The forecasts in the decomposition analysis are the sum of two prediction values obtained from modeling each decomposed series, respectively. Among the three NN approaches, Decomposition Analysis shows the best forecasting performance on the M2 Competition Data, and is expected to be a promising tool in analyzing socio-economic time series data because it reduces the effect of noise or outliers that is an impediment to modeling the time series generating process." @default.
- W798545274 created "2016-06-24" @default.
- W798545274 creator A5020790647 @default.
- W798545274 date "1999-01-01" @default.
- W798545274 modified "2023-09-24" @default.
- W798545274 title "Decomposition Analysis of Time Series Using Neural Networks" @default.
- W798545274 hasPublicationYear "1999" @default.
- W798545274 type Work @default.
- W798545274 sameAs 798545274 @default.
- W798545274 citedByCount "0" @default.
- W798545274 crossrefType "journal-article" @default.
- W798545274 hasAuthorship W798545274A5020790647 @default.
- W798545274 hasConcept C115961682 @default.
- W798545274 hasConcept C119857082 @default.
- W798545274 hasConcept C124101348 @default.
- W798545274 hasConcept C136272165 @default.
- W798545274 hasConcept C143724316 @default.
- W798545274 hasConcept C151406439 @default.
- W798545274 hasConcept C151730666 @default.
- W798545274 hasConcept C153180895 @default.
- W798545274 hasConcept C154945302 @default.
- W798545274 hasConcept C179717631 @default.
- W798545274 hasConcept C22789450 @default.
- W798545274 hasConcept C24338571 @default.
- W798545274 hasConcept C41008148 @default.
- W798545274 hasConcept C50644808 @default.
- W798545274 hasConcept C79337645 @default.
- W798545274 hasConcept C86803240 @default.
- W798545274 hasConcept C99498987 @default.
- W798545274 hasConceptScore W798545274C115961682 @default.
- W798545274 hasConceptScore W798545274C119857082 @default.
- W798545274 hasConceptScore W798545274C124101348 @default.
- W798545274 hasConceptScore W798545274C136272165 @default.
- W798545274 hasConceptScore W798545274C143724316 @default.
- W798545274 hasConceptScore W798545274C151406439 @default.
- W798545274 hasConceptScore W798545274C151730666 @default.
- W798545274 hasConceptScore W798545274C153180895 @default.
- W798545274 hasConceptScore W798545274C154945302 @default.
- W798545274 hasConceptScore W798545274C179717631 @default.
- W798545274 hasConceptScore W798545274C22789450 @default.
- W798545274 hasConceptScore W798545274C24338571 @default.
- W798545274 hasConceptScore W798545274C41008148 @default.
- W798545274 hasConceptScore W798545274C50644808 @default.
- W798545274 hasConceptScore W798545274C79337645 @default.
- W798545274 hasConceptScore W798545274C86803240 @default.
- W798545274 hasConceptScore W798545274C99498987 @default.
- W798545274 hasIssue "1" @default.
- W798545274 hasLocation W7985452741 @default.
- W798545274 hasOpenAccess W798545274 @default.
- W798545274 hasPrimaryLocation W7985452741 @default.
- W798545274 hasRelatedWork W1480724561 @default.
- W798545274 hasRelatedWork W1728936537 @default.
- W798545274 hasRelatedWork W1969971654 @default.
- W798545274 hasRelatedWork W2022959334 @default.
- W798545274 hasRelatedWork W2083060785 @default.
- W798545274 hasRelatedWork W2134195617 @default.
- W798545274 hasRelatedWork W2171807302 @default.
- W798545274 hasRelatedWork W2294174163 @default.
- W798545274 hasRelatedWork W2368899801 @default.
- W798545274 hasRelatedWork W2519804831 @default.
- W798545274 hasRelatedWork W2530054754 @default.
- W798545274 hasRelatedWork W2768611092 @default.
- W798545274 hasRelatedWork W2783572845 @default.
- W798545274 hasRelatedWork W2869451932 @default.
- W798545274 hasRelatedWork W2897787857 @default.
- W798545274 hasRelatedWork W2975697893 @default.
- W798545274 hasRelatedWork W2979258187 @default.
- W798545274 hasRelatedWork W2999161825 @default.
- W798545274 hasRelatedWork W3138281013 @default.
- W798545274 hasRelatedWork W3093423702 @default.
- W798545274 hasVolume "25" @default.
- W798545274 isParatext "false" @default.
- W798545274 isRetracted "false" @default.
- W798545274 magId "798545274" @default.
- W798545274 workType "article" @default.