Matches in SemOpenAlex for { <https://semopenalex.org/work/W798924468> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W798924468 abstract "Process Analytical Chemistry/Technology has tremendously evolved in the last decades due to the development of multivariate online sensors that are able to monitor the properties of industrial processes in real time [1, 2]. Online monitoring of product quality and the detection of process upsets are important for the pharmaceutical and fine chemical industry in order to maintain product specifications and meet their commitments regarding safety, health and environment. Many methods exist to extract useful information from the vast amount of data produced by online sensors. Chemometric methods, such as Principal Component Regression (PCR) and Partial Least Squares (PLS) or Black Box modelling (e.g. Neural Networks) are commonly used during the monitoring of batch processes [3, 4]. However, for these data-driven methods, calibration conditions need to be maintained during the actual process and the calibration generally behaves poorly when extrapolated to different operating conditions. On the other hand, kinetic modelling techniques [5], based on first principal models, describing the kinetics of main and side products, do not encounter such drawbacks and can be adapted for the monitoring of highly fluctuating processes, e.g. under semi-batch conditions. During batch and semi-batch processes, deviations from standard operating conditions can have various origins. Most frequent sources of deviations are due to slightly imprecise initial conditions (e.g. initial concentrations) or impurities in the initial reactants causing unexpected side reactions [6]. In this contribution, we propose a method for the online monitoring of semi-batch processes based on a kinetic modelling approach in order to optimise operating conditions and reduce “batch to batch” deviations. To our knowledge, this option has not yet been considered in literature. The proposed method requires the kinetic model and the associated rate constants to be known, i.e. determined in an early phase of RD In the following, the different steps of the algorithm, currently implemented into Matlab, are outlined. The algorithm assumes a first small amount of reagent to be dosed into the reaction mixture inside the reactor. Corrected initial concentrations are then determined by fitting the kinetic model to measurements, such as UV-vis, IR or heat power, using the Newton-Gauss-Levenberg/Marquardt (NGL/M) optimiser. If the optimiser fails the operator has the option to dose more reagent. Possible failure can be due to an early process upset, or to the fact that too little reagent was dosed in order to follow the kinetics reliably. The corrected initial concentrations are then fed back into the kinetic model and the algorithm optimises the flow rate for the dosed reagent or the operating temperature in order to maximise under constraints user-defined properties of the process, such as yield, selectivity or conversion. For this constrained optimisation, nonlinear programming (NLP) is employed (Matlab’s fmincon function). As soon as optimum operating conditions are obtained by the algorithm, the reactor will automatically run at these improved settings. As an option, flow rate and temperature can continuously be re-optimised to adapt to possible fluctuations in operating conditions. During the whole procedure, the algorithm also tests for possible process upset. If such an incident is detected the operator is asked to take appropriate action, for example a reactor shut down. The algorithm will be demonstrated using simulated data from mid-IR and UV-vis spectroscopy as well as from calorimetry. [1] P. Gemperline, G. Puxty, M. Maeder, D. Walker, F. Tarczynski, M. Bosserman, Analytical Chemistry 76 (2004) 2575-2582. [2] J. Workman, M. Koch, D. Veltkamp, Analytical Chemistry 77 (2005) 3789-3806. [3] M. Spear, Chemical Processing 70 (2007) 20-26. [4] T.J. Thurston, R.G. Brereton, D.J. Foord, R.E.A. Escott, Journal of Chemometrics 17 (2003) 313-322. [5] M. Maeder, Y.M. Neuhold, Practical Data Analysis in Chemistry, Elsevier, Amsterdam NL, 2007. [6] E.N.M. van Sprang, H.J. Ramaker, H.F.M. Boelens, J.A. Westerhuis, D. Whiteman, D. Baines, I. Weaver, Analyst 128 (2003) 98-102." @default.
- W798924468 created "2016-06-24" @default.
- W798924468 creator A5031286352 @default.
- W798924468 creator A5073667889 @default.
- W798924468 creator A5083504719 @default.
- W798924468 creator A5088038094 @default.
- W798924468 date "2008-01-01" @default.
- W798924468 modified "2023-09-27" @default.
- W798924468 title "Online optimisation and detection of process upset in semi-batch reactors using a kinetic modelling approach" @default.
- W798924468 cites W217625038 @default.
- W798924468 hasPublicationYear "2008" @default.
- W798924468 type Work @default.
- W798924468 sameAs 798924468 @default.
- W798924468 citedByCount "0" @default.
- W798924468 crossrefType "journal-article" @default.
- W798924468 hasAuthorship W798924468A5031286352 @default.
- W798924468 hasAuthorship W798924468A5073667889 @default.
- W798924468 hasAuthorship W798924468A5083504719 @default.
- W798924468 hasAuthorship W798924468A5088038094 @default.
- W798924468 hasConcept C105795698 @default.
- W798924468 hasConcept C111919701 @default.
- W798924468 hasConcept C119857082 @default.
- W798924468 hasConcept C124101348 @default.
- W798924468 hasConcept C127413603 @default.
- W798924468 hasConcept C151304367 @default.
- W798924468 hasConcept C154945302 @default.
- W798924468 hasConcept C165838908 @default.
- W798924468 hasConcept C172658912 @default.
- W798924468 hasConcept C174998907 @default.
- W798924468 hasConcept C178144697 @default.
- W798924468 hasConcept C183696295 @default.
- W798924468 hasConcept C199360897 @default.
- W798924468 hasConcept C21547014 @default.
- W798924468 hasConcept C21880701 @default.
- W798924468 hasConcept C22354355 @default.
- W798924468 hasConcept C27438332 @default.
- W798924468 hasConcept C33923547 @default.
- W798924468 hasConcept C41008148 @default.
- W798924468 hasConcept C94966114 @default.
- W798924468 hasConcept C98045186 @default.
- W798924468 hasConceptScore W798924468C105795698 @default.
- W798924468 hasConceptScore W798924468C111919701 @default.
- W798924468 hasConceptScore W798924468C119857082 @default.
- W798924468 hasConceptScore W798924468C124101348 @default.
- W798924468 hasConceptScore W798924468C127413603 @default.
- W798924468 hasConceptScore W798924468C151304367 @default.
- W798924468 hasConceptScore W798924468C154945302 @default.
- W798924468 hasConceptScore W798924468C165838908 @default.
- W798924468 hasConceptScore W798924468C172658912 @default.
- W798924468 hasConceptScore W798924468C174998907 @default.
- W798924468 hasConceptScore W798924468C178144697 @default.
- W798924468 hasConceptScore W798924468C183696295 @default.
- W798924468 hasConceptScore W798924468C199360897 @default.
- W798924468 hasConceptScore W798924468C21547014 @default.
- W798924468 hasConceptScore W798924468C21880701 @default.
- W798924468 hasConceptScore W798924468C22354355 @default.
- W798924468 hasConceptScore W798924468C27438332 @default.
- W798924468 hasConceptScore W798924468C33923547 @default.
- W798924468 hasConceptScore W798924468C41008148 @default.
- W798924468 hasConceptScore W798924468C94966114 @default.
- W798924468 hasConceptScore W798924468C98045186 @default.
- W798924468 hasLocation W7989244681 @default.
- W798924468 hasOpenAccess W798924468 @default.
- W798924468 hasPrimaryLocation W7989244681 @default.
- W798924468 hasRelatedWork W1567909394 @default.
- W798924468 hasRelatedWork W1968523893 @default.
- W798924468 hasRelatedWork W1975944951 @default.
- W798924468 hasRelatedWork W1978122290 @default.
- W798924468 hasRelatedWork W1981347630 @default.
- W798924468 hasRelatedWork W1989569044 @default.
- W798924468 hasRelatedWork W1990133904 @default.
- W798924468 hasRelatedWork W2013487532 @default.
- W798924468 hasRelatedWork W2016319797 @default.
- W798924468 hasRelatedWork W2018349456 @default.
- W798924468 hasRelatedWork W2018984459 @default.
- W798924468 hasRelatedWork W2023081979 @default.
- W798924468 hasRelatedWork W2030292448 @default.
- W798924468 hasRelatedWork W203984776 @default.
- W798924468 hasRelatedWork W2095539850 @default.
- W798924468 hasRelatedWork W2183325019 @default.
- W798924468 hasRelatedWork W2303860304 @default.
- W798924468 hasRelatedWork W28163511 @default.
- W798924468 hasRelatedWork W145280962 @default.
- W798924468 hasRelatedWork W2146780270 @default.
- W798924468 isParatext "false" @default.
- W798924468 isRetracted "false" @default.
- W798924468 magId "798924468" @default.
- W798924468 workType "article" @default.