Matches in SemOpenAlex for { <https://semopenalex.org/work/W799601903> ?p ?o ?g. }
- W799601903 abstract "This thesis presents simple efficient algorithms to estimate distribution parameters and to construct prediction intervals for location–scale families. Specifically, we study two scenarios: one is a frequentist method for a general location–scale family and then extend to a 3–parameter distribution, another is a Bayesian method for the Gumbel distribution. At the end of the thesis, a generalized bootstrap resampling scheme is proposed to construct prediction intervals for data with an unknown distribution. Our estimator construction begins with the equivariance principle, and then makes use of unbiasedness principle. These two estimates have closed form and are functions of the sample mean, sample standard deviation, sample size, as well as the mean and variance of a corresponding standard distribution. Next, we extend the previous result to estimate a 3-parameter distribution which we call a mixed method. A central idea of the mixed method is to estimate the location and scale parameters as functions of the shape parameter. The sample mean is a popular estimator for the population mean. The mean squared error (MSE) of the sample mean is often large, however, when the sample size is small or the scale parameter is greater than the location parameter. To reduce the MSE of our location estimator, we introduce an adaptive estimator. We will illustrate this by the example of the power Gumbel distribution. The frequentist approach is often criticized as failing to take into account the uncertainty of an unknown parameter, whereas a Bayesian approach incorporates such uncertainty. The present Bayesian analysis for the Gumbel data is achieved numerically as it is hard to obtain an explicit form. We tackle the problem by providing an approximation to the exponential sum of Gumbel random variables." @default.
- W799601903 created "2016-06-24" @default.
- W799601903 creator A5081333381 @default.
- W799601903 date "2014-01-01" @default.
- W799601903 modified "2023-09-27" @default.
- W799601903 title "Parameter Estimation and Prediction Interval Construction for Location-Scale Models with Nuclear Applications" @default.
- W799601903 cites W1233208954 @default.
- W799601903 cites W1481794564 @default.
- W799601903 cites W1531509753 @default.
- W799601903 cites W1549135415 @default.
- W799601903 cites W1585379323 @default.
- W799601903 cites W1840190268 @default.
- W799601903 cites W1965616466 @default.
- W799601903 cites W1966332343 @default.
- W799601903 cites W1968214723 @default.
- W799601903 cites W1968701112 @default.
- W799601903 cites W1971382239 @default.
- W799601903 cites W1973965527 @default.
- W799601903 cites W1974832471 @default.
- W799601903 cites W1978239142 @default.
- W799601903 cites W1979430848 @default.
- W799601903 cites W1981154957 @default.
- W799601903 cites W1984996685 @default.
- W799601903 cites W1987037087 @default.
- W799601903 cites W1989900574 @default.
- W799601903 cites W1993698169 @default.
- W799601903 cites W1998666498 @default.
- W799601903 cites W2000291746 @default.
- W799601903 cites W2000776869 @default.
- W799601903 cites W2002362019 @default.
- W799601903 cites W2005920009 @default.
- W799601903 cites W2006258746 @default.
- W799601903 cites W2009448508 @default.
- W799601903 cites W2011626015 @default.
- W799601903 cites W2013334117 @default.
- W799601903 cites W2013828304 @default.
- W799601903 cites W2017696952 @default.
- W799601903 cites W2019747837 @default.
- W799601903 cites W2020018978 @default.
- W799601903 cites W2039029154 @default.
- W799601903 cites W2040066666 @default.
- W799601903 cites W2040709360 @default.
- W799601903 cites W2042079130 @default.
- W799601903 cites W2045307270 @default.
- W799601903 cites W2046483399 @default.
- W799601903 cites W2048344982 @default.
- W799601903 cites W2048934352 @default.
- W799601903 cites W2049053682 @default.
- W799601903 cites W2050640250 @default.
- W799601903 cites W2052218905 @default.
- W799601903 cites W2052226080 @default.
- W799601903 cites W2053356788 @default.
- W799601903 cites W2056238226 @default.
- W799601903 cites W2056315206 @default.
- W799601903 cites W2060310426 @default.
- W799601903 cites W2062744122 @default.
- W799601903 cites W2063203758 @default.
- W799601903 cites W2067844778 @default.
- W799601903 cites W2070516785 @default.
- W799601903 cites W2071076722 @default.
- W799601903 cites W2076099550 @default.
- W799601903 cites W2076457094 @default.
- W799601903 cites W2085204840 @default.
- W799601903 cites W2092755067 @default.
- W799601903 cites W2101282621 @default.
- W799601903 cites W2103836868 @default.
- W799601903 cites W2105370307 @default.
- W799601903 cites W2106790025 @default.
- W799601903 cites W2108447811 @default.
- W799601903 cites W2112440119 @default.
- W799601903 cites W2117897510 @default.
- W799601903 cites W2120793724 @default.
- W799601903 cites W2129905273 @default.
- W799601903 cites W2137048831 @default.
- W799601903 cites W2139224138 @default.
- W799601903 cites W2147502651 @default.
- W799601903 cites W2148180395 @default.
- W799601903 cites W2150913645 @default.
- W799601903 cites W2162476997 @default.
- W799601903 cites W2168869026 @default.
- W799601903 cites W2312194337 @default.
- W799601903 cites W2428472680 @default.
- W799601903 cites W2467305554 @default.
- W799601903 cites W2567930543 @default.
- W799601903 cites W2612491429 @default.
- W799601903 cites W2905509678 @default.
- W799601903 cites W3015317271 @default.
- W799601903 cites W3023355515 @default.
- W799601903 cites W3099242408 @default.
- W799601903 cites W3113221786 @default.
- W799601903 cites W3124497024 @default.
- W799601903 cites W352984150 @default.
- W799601903 cites W35647712 @default.
- W799601903 cites W53546973 @default.
- W799601903 cites W657513273 @default.
- W799601903 cites W2412879597 @default.
- W799601903 cites W2513457841 @default.
- W799601903 hasPublicationYear "2014" @default.
- W799601903 type Work @default.
- W799601903 sameAs 799601903 @default.