Matches in SemOpenAlex for { <https://semopenalex.org/work/W80102357> ?p ?o ?g. }
- W80102357 endingPage "298" @default.
- W80102357 startingPage "282" @default.
- W80102357 abstract "This paper focuses on efficient algorithms for single and multi-view spectral clustering with a convex regularization term for very large scale image datasets. In computer vision applications, multiple views denote distinct image-derived feature representations that inform the clustering. Separately, the regularization encodes high level advice such as tags or user interaction in identifying similar objects across examples. Depending on the specific task, schemes to exploit such information may lead to a smooth or non-smooth regularization function. We present stochastic gradient descent methods for optimizing spectral clustering objectives with such convex regularizers for datasets with up to a hundred million examples. We prove that under mild conditions the local convergence rate is (O(1/sqrt{T})) where T is the number of iterations; further, our analysis shows that the convergence improves linearly by increasing the number of threads. We give extensive experimental results on a range of vision datasets demonstrating the algorithm’s empirical behavior." @default.
- W80102357 created "2016-06-24" @default.
- W80102357 creator A5002967684 @default.
- W80102357 creator A5042055991 @default.
- W80102357 creator A5049225160 @default.
- W80102357 creator A5054642319 @default.
- W80102357 creator A5088095690 @default.
- W80102357 date "2014-01-01" @default.
- W80102357 modified "2023-09-26" @default.
- W80102357 title "Spectral Clustering with a Convex Regularizer on Millions of Images" @default.
- W80102357 cites W1506690472 @default.
- W80102357 cites W1539831438 @default.
- W80102357 cites W1549083695 @default.
- W80102357 cites W1566135517 @default.
- W80102357 cites W1677409904 @default.
- W80102357 cites W2045512849 @default.
- W80102357 cites W2051549110 @default.
- W80102357 cites W2083359884 @default.
- W80102357 cites W2086953401 @default.
- W80102357 cites W2108598243 @default.
- W80102357 cites W2113573459 @default.
- W80102357 cites W2116810533 @default.
- W80102357 cites W2123576058 @default.
- W80102357 cites W2124372976 @default.
- W80102357 cites W2126337883 @default.
- W80102357 cites W2136294701 @default.
- W80102357 cites W2142674578 @default.
- W80102357 cites W2145607950 @default.
- W80102357 cites W2151103935 @default.
- W80102357 cites W2169232245 @default.
- W80102357 cites W2171790913 @default.
- W80102357 cites W2405459681 @default.
- W80102357 cites W2962834831 @default.
- W80102357 cites W3105471108 @default.
- W80102357 cites W4233135949 @default.
- W80102357 cites W4249293656 @default.
- W80102357 doi "https://doi.org/10.1007/978-3-319-10578-9_19" @default.
- W80102357 hasPublicationYear "2014" @default.
- W80102357 type Work @default.
- W80102357 sameAs 80102357 @default.
- W80102357 citedByCount "23" @default.
- W80102357 countsByYear W801023572014 @default.
- W80102357 countsByYear W801023572015 @default.
- W80102357 countsByYear W801023572016 @default.
- W80102357 countsByYear W801023572017 @default.
- W80102357 countsByYear W801023572018 @default.
- W80102357 countsByYear W801023572019 @default.
- W80102357 countsByYear W801023572020 @default.
- W80102357 countsByYear W801023572021 @default.
- W80102357 countsByYear W801023572022 @default.
- W80102357 crossrefType "book-chapter" @default.
- W80102357 hasAuthorship W80102357A5002967684 @default.
- W80102357 hasAuthorship W80102357A5042055991 @default.
- W80102357 hasAuthorship W80102357A5049225160 @default.
- W80102357 hasAuthorship W80102357A5054642319 @default.
- W80102357 hasAuthorship W80102357A5088095690 @default.
- W80102357 hasBestOaLocation W801023571 @default.
- W80102357 hasConcept C105611402 @default.
- W80102357 hasConcept C112680207 @default.
- W80102357 hasConcept C11413529 @default.
- W80102357 hasConcept C145446738 @default.
- W80102357 hasConcept C153180895 @default.
- W80102357 hasConcept C154945302 @default.
- W80102357 hasConcept C162324750 @default.
- W80102357 hasConcept C165696696 @default.
- W80102357 hasConcept C206688291 @default.
- W80102357 hasConcept C2524010 @default.
- W80102357 hasConcept C26517878 @default.
- W80102357 hasConcept C2776135515 @default.
- W80102357 hasConcept C2777303404 @default.
- W80102357 hasConcept C33923547 @default.
- W80102357 hasConcept C38652104 @default.
- W80102357 hasConcept C41008148 @default.
- W80102357 hasConcept C50522688 @default.
- W80102357 hasConcept C50644808 @default.
- W80102357 hasConcept C57869625 @default.
- W80102357 hasConcept C73555534 @default.
- W80102357 hasConceptScore W80102357C105611402 @default.
- W80102357 hasConceptScore W80102357C112680207 @default.
- W80102357 hasConceptScore W80102357C11413529 @default.
- W80102357 hasConceptScore W80102357C145446738 @default.
- W80102357 hasConceptScore W80102357C153180895 @default.
- W80102357 hasConceptScore W80102357C154945302 @default.
- W80102357 hasConceptScore W80102357C162324750 @default.
- W80102357 hasConceptScore W80102357C165696696 @default.
- W80102357 hasConceptScore W80102357C206688291 @default.
- W80102357 hasConceptScore W80102357C2524010 @default.
- W80102357 hasConceptScore W80102357C26517878 @default.
- W80102357 hasConceptScore W80102357C2776135515 @default.
- W80102357 hasConceptScore W80102357C2777303404 @default.
- W80102357 hasConceptScore W80102357C33923547 @default.
- W80102357 hasConceptScore W80102357C38652104 @default.
- W80102357 hasConceptScore W80102357C41008148 @default.
- W80102357 hasConceptScore W80102357C50522688 @default.
- W80102357 hasConceptScore W80102357C50644808 @default.
- W80102357 hasConceptScore W80102357C57869625 @default.
- W80102357 hasConceptScore W80102357C73555534 @default.
- W80102357 hasLocation W801023571 @default.