Matches in SemOpenAlex for { <https://semopenalex.org/work/W801473856> ?p ?o ?g. }
- W801473856 endingPage "158" @default.
- W801473856 startingPage "131" @default.
- W801473856 abstract "Side channel attacks – attacks that exploit implementation-dependent information of a cryptosystem – have been shown to be highly detrimental, and the cryptographic community has recently focused on developing techniques for securing implementations against such attacks. An important model called Only Computation Leaks (OCL) [Micali and Reyzin, TCC ’04] and its stronger variants were proposed to model a broad class of leakage attacks (a type of side-channel attack). These models allow for unbounded, arbitrary leakage as long as (1) information in each leakage observation is bounded, and (2) different parts of the computation leak independently. Various results and techniques have been developed for these models and we continue this line of research in the current work. We address the problem of compiling any circuit into a circuit secure against OCL attacks. In order to leverage the OCL assumption, the resulting circuit will be split into components, where at any point in time only a single component is active. Optimally, we would like to output a circuit that has only one component, and no part of the computation needs to be leak-free. However, this task is impossible due to the result of Barak et al. [JACM ’12]. The current state-of-the-art constructions achieve either two components with additional leak-free hardware, or many components without leak-free hardware. In this work, we show how to achieve the best of both worlds: We construct two-component OCL schemes without relying on leak-free components. Our approach is general and modular – we develop generic techniques to remove the hardware component from hardware-based constructions, when the functionality provided by the hardware satisfies some properties. Our techniques use universal deniable encryption (recently constructed by Sahai and Water [STOC ’14] using indistinguishable obfuscation) and non-committing encryption in a novel way. Then, we observe that the functionalities of the hardware used in previous two-component constructions of Juma and Vahlis [Crypto ’10], and Dziembowski and Faust [TCC ’12] satisfy the required properties. The techniques developed in this paper have deep connections with adaptively secure and leakage tolerant multi-party computation (MPC). Our constructions immediately yield adaptively secure and leakage tolerant MPC protocols for any no-input randomized functionality in the semi-honest model. The result holds in the CRS model, without pre-processing. Our results also have implications to two-party leakage tolerant computation for arbitrary functionalities, which we obtain by combining our constructions with a recent result of Bitansky, Dachman-Soled, and Lin [Crypto ’14]." @default.
- W801473856 created "2016-06-24" @default.
- W801473856 creator A5005725877 @default.
- W801473856 creator A5030233265 @default.
- W801473856 creator A5083215230 @default.
- W801473856 date "2015-01-01" @default.
- W801473856 modified "2023-10-18" @default.
- W801473856 title "Leakage-Resilient Circuits Revisited – Optimal Number of Computing Components Without Leak-Free Hardware" @default.
- W801473856 cites W128586694 @default.
- W801473856 cites W1494600236 @default.
- W801473856 cites W1499934958 @default.
- W801473856 cites W1501402336 @default.
- W801473856 cites W1519539754 @default.
- W801473856 cites W1523616062 @default.
- W801473856 cites W1541150254 @default.
- W801473856 cites W1563465674 @default.
- W801473856 cites W1588165891 @default.
- W801473856 cites W1592625985 @default.
- W801473856 cites W1594985992 @default.
- W801473856 cites W1601062705 @default.
- W801473856 cites W1613874182 @default.
- W801473856 cites W1817964144 @default.
- W801473856 cites W1824405704 @default.
- W801473856 cites W1890449996 @default.
- W801473856 cites W1897761346 @default.
- W801473856 cites W1984153141 @default.
- W801473856 cites W2004419620 @default.
- W801473856 cites W200547771 @default.
- W801473856 cites W2025849355 @default.
- W801473856 cites W2038073775 @default.
- W801473856 cites W2054904172 @default.
- W801473856 cites W2084641398 @default.
- W801473856 cites W2096430557 @default.
- W801473856 cites W2100605909 @default.
- W801473856 cites W2101248381 @default.
- W801473856 cites W2103289002 @default.
- W801473856 cites W2107691219 @default.
- W801473856 cites W2113085788 @default.
- W801473856 cites W2118629598 @default.
- W801473856 cites W2122497539 @default.
- W801473856 cites W2122774732 @default.
- W801473856 cites W2148888468 @default.
- W801473856 cites W2154909745 @default.
- W801473856 cites W2166561215 @default.
- W801473856 cites W2170489924 @default.
- W801473856 cites W2175377689 @default.
- W801473856 cites W2221582088 @default.
- W801473856 cites W2245251610 @default.
- W801473856 cites W236432643 @default.
- W801473856 cites W386218400 @default.
- W801473856 cites W823527867 @default.
- W801473856 cites W827517162 @default.
- W801473856 doi "https://doi.org/10.1007/978-3-662-46803-6_5" @default.
- W801473856 hasPublicationYear "2015" @default.
- W801473856 type Work @default.
- W801473856 sameAs 801473856 @default.
- W801473856 citedByCount "13" @default.
- W801473856 countsByYear W8014738562015 @default.
- W801473856 countsByYear W8014738562016 @default.
- W801473856 countsByYear W8014738562017 @default.
- W801473856 countsByYear W8014738562018 @default.
- W801473856 countsByYear W8014738562019 @default.
- W801473856 countsByYear W8014738562020 @default.
- W801473856 countsByYear W8014738562021 @default.
- W801473856 countsByYear W8014738562022 @default.
- W801473856 crossrefType "book-chapter" @default.
- W801473856 hasAuthorship W801473856A5005725877 @default.
- W801473856 hasAuthorship W801473856A5030233265 @default.
- W801473856 hasAuthorship W801473856A5083215230 @default.
- W801473856 hasBestOaLocation W8014738561 @default.
- W801473856 hasConcept C101468663 @default.
- W801473856 hasConcept C113775141 @default.
- W801473856 hasConcept C11413529 @default.
- W801473856 hasConcept C120314980 @default.
- W801473856 hasConcept C121332964 @default.
- W801473856 hasConcept C139719470 @default.
- W801473856 hasConcept C149635348 @default.
- W801473856 hasConcept C162324750 @default.
- W801473856 hasConcept C165696696 @default.
- W801473856 hasConcept C168167062 @default.
- W801473856 hasConcept C178489894 @default.
- W801473856 hasConcept C199360897 @default.
- W801473856 hasConcept C2777042071 @default.
- W801473856 hasConcept C2779201187 @default.
- W801473856 hasConcept C38652104 @default.
- W801473856 hasConcept C41008148 @default.
- W801473856 hasConcept C45374587 @default.
- W801473856 hasConcept C49289754 @default.
- W801473856 hasConcept C6295992 @default.
- W801473856 hasConcept C80444323 @default.
- W801473856 hasConcept C97355855 @default.
- W801473856 hasConceptScore W801473856C101468663 @default.
- W801473856 hasConceptScore W801473856C113775141 @default.
- W801473856 hasConceptScore W801473856C11413529 @default.
- W801473856 hasConceptScore W801473856C120314980 @default.
- W801473856 hasConceptScore W801473856C121332964 @default.
- W801473856 hasConceptScore W801473856C139719470 @default.
- W801473856 hasConceptScore W801473856C149635348 @default.