Matches in SemOpenAlex for { <https://semopenalex.org/work/W802940772> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W802940772 abstract "This paper relates to the optimisation of structural design using Genetic Algorithms (GAs) and presents an improved method for determining the fitness of genetic codes that represent possible design solutions by using a neural network to generalize fitness. Two problems that often impede design optimization using genetic algorithms are expensive fitness evaluation and high epistasis. In this paper we show that by using a neural network as a fitness approximator, optimal solutions to certain design problems can be achieved in significantly less generations and with considerably less fitness evaluations." @default.
- W802940772 created "2016-06-24" @default.
- W802940772 creator A5058665431 @default.
- W802940772 creator A5071573612 @default.
- W802940772 date "2009-05-25" @default.
- W802940772 modified "2023-10-18" @default.
- W802940772 title "Fitness Evaluation for Structural Optimisation Genetic Algorithms Using Neural Networks" @default.
- W802940772 cites W1639032689 @default.
- W802940772 cites W1996077822 @default.
- W802940772 cites W2008166887 @default.
- W802940772 cites W2012451526 @default.
- W802940772 cites W2020752194 @default.
- W802940772 cites W2065273135 @default.
- W802940772 cites W2078881852 @default.
- W802940772 cites W2144636407 @default.
- W802940772 cites W2170961861 @default.
- W802940772 cites W2376645 @default.
- W802940772 cites W5439332 @default.
- W802940772 cites W627530429 @default.
- W802940772 doi "https://doi.org/10.4203/ccp.84.51" @default.
- W802940772 hasPublicationYear "2009" @default.
- W802940772 type Work @default.
- W802940772 sameAs 802940772 @default.
- W802940772 citedByCount "1" @default.
- W802940772 countsByYear W8029407722012 @default.
- W802940772 crossrefType "proceedings-article" @default.
- W802940772 hasAuthorship W802940772A5058665431 @default.
- W802940772 hasAuthorship W802940772A5071573612 @default.
- W802940772 hasBestOaLocation W8029407722 @default.
- W802940772 hasConcept C11413529 @default.
- W802940772 hasConcept C119857082 @default.
- W802940772 hasConcept C154945302 @default.
- W802940772 hasConcept C41008148 @default.
- W802940772 hasConcept C50644808 @default.
- W802940772 hasConcept C8880873 @default.
- W802940772 hasConceptScore W802940772C11413529 @default.
- W802940772 hasConceptScore W802940772C119857082 @default.
- W802940772 hasConceptScore W802940772C154945302 @default.
- W802940772 hasConceptScore W802940772C41008148 @default.
- W802940772 hasConceptScore W802940772C50644808 @default.
- W802940772 hasConceptScore W802940772C8880873 @default.
- W802940772 hasLocation W8029407721 @default.
- W802940772 hasLocation W8029407722 @default.
- W802940772 hasOpenAccess W802940772 @default.
- W802940772 hasPrimaryLocation W8029407721 @default.
- W802940772 hasRelatedWork W2356957943 @default.
- W802940772 hasRelatedWork W2359549665 @default.
- W802940772 hasRelatedWork W2362315382 @default.
- W802940772 hasRelatedWork W2382761789 @default.
- W802940772 hasRelatedWork W2386058197 @default.
- W802940772 hasRelatedWork W2392110728 @default.
- W802940772 hasRelatedWork W2961085424 @default.
- W802940772 hasRelatedWork W3195272954 @default.
- W802940772 hasRelatedWork W4306674287 @default.
- W802940772 hasRelatedWork W1629725936 @default.
- W802940772 isParatext "false" @default.
- W802940772 isRetracted "false" @default.
- W802940772 magId "802940772" @default.
- W802940772 workType "article" @default.