Matches in SemOpenAlex for { <https://semopenalex.org/work/W804064525> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W804064525 abstract "SammandragI det har kandidatarbetet redogor vi for bevis av tre klassiska satser fran talteorin. Vi kommeratt bevisa primtalssatsen, tva- och fyrkvadratssatsen och Dirichlets sats om primtal i aritmetiskafoljder. Till var hjalp tar vi begrepp ifran komplexanalys och Fourieranalys, och arbetet innehallerdarfor ocksa en grundlig teorigenomgang innan sjalva satserna kan bevisas.AbstractIn this bachelor thesis we outline proofs for three classic theorems from number theory. We willprove the prime number theorem, Jacobi’s two- and four-squares theorems and Dirichlet’s theoremon primes in arithmetic sequences. In proving these theorems, methods from complex analysis andFourier analys will be needed. Thus, this thesis includes a thorough review of the necessary theory." @default.
- W804064525 created "2016-06-24" @default.
- W804064525 creator A5000630460 @default.
- W804064525 creator A5012682098 @default.
- W804064525 creator A5026302198 @default.
- W804064525 creator A5053239235 @default.
- W804064525 creator A5058885450 @default.
- W804064525 creator A5087439948 @default.
- W804064525 date "2015-01-01" @default.
- W804064525 modified "2023-09-23" @default.
- W804064525 title "Komplexanalytiska metoder inom talteori" @default.
- W804064525 hasPublicationYear "2015" @default.
- W804064525 type Work @default.
- W804064525 sameAs 804064525 @default.
- W804064525 citedByCount "0" @default.
- W804064525 crossrefType "dissertation" @default.
- W804064525 hasAuthorship W804064525A5000630460 @default.
- W804064525 hasAuthorship W804064525A5012682098 @default.
- W804064525 hasAuthorship W804064525A5026302198 @default.
- W804064525 hasAuthorship W804064525A5053239235 @default.
- W804064525 hasAuthorship W804064525A5058885450 @default.
- W804064525 hasAuthorship W804064525A5087439948 @default.
- W804064525 hasConcept C108710211 @default.
- W804064525 hasConcept C113429393 @default.
- W804064525 hasConcept C114614502 @default.
- W804064525 hasConcept C118615104 @default.
- W804064525 hasConcept C136119220 @default.
- W804064525 hasConcept C17744445 @default.
- W804064525 hasConcept C184992742 @default.
- W804064525 hasConcept C199539241 @default.
- W804064525 hasConcept C202444582 @default.
- W804064525 hasConcept C2524010 @default.
- W804064525 hasConcept C2777626052 @default.
- W804064525 hasConcept C33923547 @default.
- W804064525 hasConceptScore W804064525C108710211 @default.
- W804064525 hasConceptScore W804064525C113429393 @default.
- W804064525 hasConceptScore W804064525C114614502 @default.
- W804064525 hasConceptScore W804064525C118615104 @default.
- W804064525 hasConceptScore W804064525C136119220 @default.
- W804064525 hasConceptScore W804064525C17744445 @default.
- W804064525 hasConceptScore W804064525C184992742 @default.
- W804064525 hasConceptScore W804064525C199539241 @default.
- W804064525 hasConceptScore W804064525C202444582 @default.
- W804064525 hasConceptScore W804064525C2524010 @default.
- W804064525 hasConceptScore W804064525C2777626052 @default.
- W804064525 hasConceptScore W804064525C33923547 @default.
- W804064525 hasLocation W8040645251 @default.
- W804064525 hasOpenAccess W804064525 @default.
- W804064525 hasPrimaryLocation W8040645251 @default.
- W804064525 isParatext "false" @default.
- W804064525 isRetracted "false" @default.
- W804064525 magId "804064525" @default.
- W804064525 workType "dissertation" @default.