Matches in SemOpenAlex for { <https://semopenalex.org/work/W805952811> ?p ?o ?g. }
- W805952811 abstract "Many tasks in Natural Language Processing (NLP) require us to predict a relational structure over entities. For example, in Semantic Role Labelling we try to predict the ’semantic role’ relation between a predicate verb and its argument constituents. Often NLP tasks not only involve related entities but also relations that are stochastically correlated. For instance, in Semantic Role Labelling the roles of different constituents are correlated: we cannot assign the agent role to one constituent if we have already assigned this role to another. Statistical Relational Learning (also known as First Order Probabilistic Logic) allows us to capture the aforementioned nature of NLP tasks because it is based on the notions of entities, relations and stochastic correlations between relationships. It is therefore often straightforward to formulate an NLP task using a First Order probabilistic language such as Markov Logic. However, the generality of this approach comes at a price: the process of finding the relational structure with highest probability, also known as maximum a posteriori (MAP) inference, is often inefficient, if not intractable. In this work we seek to improve the efficiency of MAP inference for Statistical Relational Learning. We propose a meta-algorithm, namely Cutting Plane Inference (CPI), that iteratively solves small subproblems of the original problem using any existing MAP technique and inspects parts of the problem that are not yet included in the current subproblem but could potentially lead to an improved solution. Our hypothesis is that this algorithm can dramatically improve the efficiency of existing methods while remaining at least as accurate. We frame the algorithm in Markov Logic, a language that combines First Order Logic and Markov Networks. Our hypothesis is evaluated using two tasks: Semantic Role Labelling and Entity Resolution. It is shown that the proposed algorithm improves the efficiency of two existing methods by two orders of magnitude and leads an approximate method to more probable solutions. We also give show that CPI, at convergence, is guaranteed to be at least as accurate as the method used within its inner loop. Another core contribution of this work is a theoretic and empirical analysis of the boundary conditions of Cutting Plane Inference. We describe cases when Cutting Plane Inference will definitely be difficult (because it instantiates large networks or needs many iterations) and when it will be easy (because it instantiates small networks and needs only few iterations)." @default.
- W805952811 created "2016-06-24" @default.
- W805952811 creator A5001151643 @default.
- W805952811 date "2009-01-01" @default.
- W805952811 modified "2023-09-26" @default.
- W805952811 title "Efficient Prediction of Relational Structure and its Application to Natural Language Processing" @default.
- W805952811 cites W121830907 @default.
- W805952811 cites W124040947 @default.
- W805952811 cites W1504110645 @default.
- W805952811 cites W1525482321 @default.
- W805952811 cites W1536980722 @default.
- W805952811 cites W1538211826 @default.
- W805952811 cites W1560512119 @default.
- W805952811 cites W1566346388 @default.
- W805952811 cites W15803339 @default.
- W805952811 cites W1581661059 @default.
- W805952811 cites W1599188306 @default.
- W805952811 cites W1601035521 @default.
- W805952811 cites W1601600618 @default.
- W805952811 cites W1608748481 @default.
- W805952811 cites W1709167095 @default.
- W805952811 cites W1714704734 @default.
- W805952811 cites W1723714545 @default.
- W805952811 cites W1748004346 @default.
- W805952811 cites W1860880244 @default.
- W805952811 cites W1965552673 @default.
- W805952811 cites W1975130368 @default.
- W805952811 cites W1977970897 @default.
- W805952811 cites W1979629649 @default.
- W805952811 cites W1986543644 @default.
- W805952811 cites W1992967856 @default.
- W805952811 cites W1995875735 @default.
- W805952811 cites W2000805332 @default.
- W805952811 cites W2008652694 @default.
- W805952811 cites W2012170877 @default.
- W805952811 cites W2020999234 @default.
- W805952811 cites W2024060531 @default.
- W805952811 cites W203049729 @default.
- W805952811 cites W2040247213 @default.
- W805952811 cites W204260652 @default.
- W805952811 cites W2043794661 @default.
- W805952811 cites W2046652577 @default.
- W805952811 cites W2058937865 @default.
- W805952811 cites W2060301741 @default.
- W805952811 cites W2078285016 @default.
- W805952811 cites W2091896764 @default.
- W805952811 cites W2096765155 @default.
- W805952811 cites W2097826433 @default.
- W805952811 cites W2103913926 @default.
- W805952811 cites W2104917081 @default.
- W805952811 cites W2105490304 @default.
- W805952811 cites W2105644991 @default.
- W805952811 cites W2105952549 @default.
- W805952811 cites W2107272354 @default.
- W805952811 cites W2110316735 @default.
- W805952811 cites W2112648537 @default.
- W805952811 cites W2116410915 @default.
- W805952811 cites W2117822433 @default.
- W805952811 cites W2121075864 @default.
- W805952811 cites W2126851059 @default.
- W805952811 cites W2129712609 @default.
- W805952811 cites W2130944959 @default.
- W805952811 cites W2134612861 @default.
- W805952811 cites W2141732516 @default.
- W805952811 cites W2144429462 @default.
- W805952811 cites W2147880316 @default.
- W805952811 cites W2149092692 @default.
- W805952811 cites W2149474573 @default.
- W805952811 cites W2150675045 @default.
- W805952811 cites W2151170651 @default.
- W805952811 cites W2153401251 @default.
- W805952811 cites W2153487529 @default.
- W805952811 cites W2156909104 @default.
- W805952811 cites W2158823144 @default.
- W805952811 cites W2159080219 @default.
- W805952811 cites W2160988325 @default.
- W805952811 cites W2161653775 @default.
- W805952811 cites W2163614729 @default.
- W805952811 cites W2164456230 @default.
- W805952811 cites W2164618588 @default.
- W805952811 cites W2166741250 @default.
- W805952811 cites W2169992051 @default.
- W805952811 cites W2171472464 @default.
- W805952811 cites W2237714026 @default.
- W805952811 cites W263731622 @default.
- W805952811 cites W28766783 @default.
- W805952811 cites W2914728526 @default.
- W805952811 cites W2962735828 @default.
- W805952811 cites W3191596906 @default.
- W805952811 cites W418523852 @default.
- W805952811 cites W47392883 @default.
- W805952811 cites W73939759 @default.
- W805952811 cites W740415 @default.
- W805952811 cites W97428240 @default.
- W805952811 hasPublicationYear "2009" @default.
- W805952811 type Work @default.
- W805952811 sameAs 805952811 @default.
- W805952811 citedByCount "0" @default.
- W805952811 crossrefType "dissertation" @default.
- W805952811 hasAuthorship W805952811A5001151643 @default.