Matches in SemOpenAlex for { <https://semopenalex.org/work/W80768568> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W80768568 abstract "A recursive formula has been discussed, which involves the Arf invariant, the special value of the Alexander polynomial and the Jones polynomial, and the Minkowski unit of a knot. Also, we reformulate J. Levine’s result on the Kervaire invariant of a homotopy sphere as a recursive formula, which suggests that the smooth structure of spheres would be distinguished from number theoretical reasons. 1 Arf invariant and Legendre symbol Let p and q be different odd primes such that p, q ≡ 1 (mod 4). Then the mod 2 linking number, lk2(p, q) ∈ Z2, of p and q is defined by the equality ( q p ) = (−1)2, (1) where the Legendre symbol (q/p) is defined to be either +1 or −1 according as q is or is not a quadratic residue modulo p. Note that the symmetry of the mod 2 linking number, lk2(p, q) = lk2(q, p), is nothing but the Gauss reciprocity law. However, the equality (1) is originally not a definition but a theorem. In fact, lk2(p, q) is defined as the image of the Frobenius automorphism σp ∈ π1(Xq) over p in Gal(Yq/Xq) ∼= Z2, where Yq → Xq := Spec(Z) − {q} is the double Etale covering. The mod 2 linking number is not always defined for any primes. For example, lk2(p, 2) is ill-defined. As is indicated in [8] by Morishita, there are many analogies between knots and primes by nature. The purpose of this note is to observe various knot invariants from number theoretical viewpoint and further discuss its higher dimensional analogue. A Note On A Recursive Formula Of The Arf-Kervaire Invariant 67 In [9] Murakami proved a recursive formula (see [4, Theorem 10.6] also) as follows: VL(i) = (− √ 2)r−1(−1)Arf(L) for a proper r-component link L, where Arf(L) denotes the Arf invariant of a link L, VL(t) is the Jones polynomial of L (see [4] for the definitions) and i = √ −1. In particular, if L is a knot, then we have VL(i) = (−1). (2) Given a link, the special value of the polynomial invariant often play an important role in studying links. It is well-known (see [4, Chapter 10] again) that for a knot K, Arf(K) = (∆K(−1)) − 1 8 (mod 2), (3) where ∆K(t) is the Alexander polynomial of a knot K and note that ∆K(−1) is odd for any knot K. Moreover, it is easy to see that VK(−1) = ∆K(−1) by checking the skein relations, so we also have Arf(K) = (VK(−1)) − 1 8 (mod 2). (4) On one hand in number theory, the 2-nd reciprocity law due to Gauss tells us ( 2 p ) = (−1) p2−1 8 . (5) Thus we can reformulate (3) and (4) by applying (5) as a recursive formula: ( 2 ∆K(−1) ) = ( 2 VK(−1) ) = (−1). (6) In addition, Murasugi defined the Minkowski unit Cp(K) of a link for a prime p (see [10]), and he proved that C2(K) = (−1). (7) By (2) and (7) we immediately have VK(i) = C2(K). Hence by combining these formulas on knot invariants we have ( 2 ∆K(−1) ) = ( 2 VK(−1) ) = VK(i) = C2(K) = (−1). (8) Remark 1.1. For a knot K, ∆K(1) = ±1 and ∆K(−1) possibly takes any odd integer since the Alexander polynomial is symmetric in Z[t, t−1]. The Legendre symbol is defined only for primes but it is extended as the Jacobi symbol (q/p) with same notation, which is defined for any odd p. Note that the 2-nd reciprocity formula with the Jacobi symbol holds in the same formula as (5). Thus it should be regarded that (8) is formulated by using the Jacobi symbol." @default.
- W80768568 created "2016-06-24" @default.
- W80768568 creator A5022897313 @default.
- W80768568 date "2008-01-01" @default.
- W80768568 modified "2023-09-27" @default.
- W80768568 title "A Note On A Recursive Formula Of The Arf-Kervaire Invariant" @default.
- W80768568 cites W1495980450 @default.
- W80768568 cites W1496662296 @default.
- W80768568 cites W1978652293 @default.
- W80768568 cites W2043554419 @default.
- W80768568 cites W2058630951 @default.
- W80768568 cites W2068195013 @default.
- W80768568 cites W2122010562 @default.
- W80768568 cites W2164106566 @default.
- W80768568 cites W337358633 @default.
- W80768568 hasPublicationYear "2008" @default.
- W80768568 type Work @default.
- W80768568 sameAs 80768568 @default.
- W80768568 citedByCount "1" @default.
- W80768568 crossrefType "journal-article" @default.
- W80768568 hasAuthorship W80768568A5022897313 @default.
- W80768568 hasConcept C114614502 @default.
- W80768568 hasConcept C118615104 @default.
- W80768568 hasConcept C129844170 @default.
- W80768568 hasConcept C165656649 @default.
- W80768568 hasConcept C166437778 @default.
- W80768568 hasConcept C190470478 @default.
- W80768568 hasConcept C2524010 @default.
- W80768568 hasConcept C33923547 @default.
- W80768568 hasConcept C37914503 @default.
- W80768568 hasConcept C54732982 @default.
- W80768568 hasConcept C95136341 @default.
- W80768568 hasConceptScore W80768568C114614502 @default.
- W80768568 hasConceptScore W80768568C118615104 @default.
- W80768568 hasConceptScore W80768568C129844170 @default.
- W80768568 hasConceptScore W80768568C165656649 @default.
- W80768568 hasConceptScore W80768568C166437778 @default.
- W80768568 hasConceptScore W80768568C190470478 @default.
- W80768568 hasConceptScore W80768568C2524010 @default.
- W80768568 hasConceptScore W80768568C33923547 @default.
- W80768568 hasConceptScore W80768568C37914503 @default.
- W80768568 hasConceptScore W80768568C54732982 @default.
- W80768568 hasConceptScore W80768568C95136341 @default.
- W80768568 hasLocation W807685681 @default.
- W80768568 hasOpenAccess W80768568 @default.
- W80768568 hasPrimaryLocation W807685681 @default.
- W80768568 hasRelatedWork W2023409861 @default.
- W80768568 hasRelatedWork W2040786089 @default.
- W80768568 hasRelatedWork W2128459235 @default.
- W80768568 hasRelatedWork W2486240679 @default.
- W80768568 hasRelatedWork W2501432546 @default.
- W80768568 hasRelatedWork W2559748590 @default.
- W80768568 hasRelatedWork W2798968230 @default.
- W80768568 hasRelatedWork W2895322321 @default.
- W80768568 hasRelatedWork W2920104752 @default.
- W80768568 hasRelatedWork W2949940366 @default.
- W80768568 hasRelatedWork W2951353107 @default.
- W80768568 hasRelatedWork W2951542501 @default.
- W80768568 hasRelatedWork W2951598396 @default.
- W80768568 hasRelatedWork W2964010541 @default.
- W80768568 hasRelatedWork W3012915691 @default.
- W80768568 hasRelatedWork W3046275920 @default.
- W80768568 hasRelatedWork W3099194106 @default.
- W80768568 hasRelatedWork W3100970234 @default.
- W80768568 hasRelatedWork W3101880361 @default.
- W80768568 hasRelatedWork W3130450913 @default.
- W80768568 isParatext "false" @default.
- W80768568 isRetracted "false" @default.
- W80768568 magId "80768568" @default.
- W80768568 workType "article" @default.