Matches in SemOpenAlex for { <https://semopenalex.org/work/W80897737> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W80897737 endingPage "336" @default.
- W80897737 startingPage "323" @default.
- W80897737 abstract "We investigate the fourth-order Cahn-Hilliard parabolic partial differential equation which describes pattern formation in phase transition. Neumann and periodic boundary conditions are considered for a domain in R n , 1 ≤ n ≤ 3. This equation is characterized by a negative (backward) second order diffusion and multiple steady states for the appropriate range of parameters. We establish compactness of the orbits in H I (Ω) and convergence to some steady state. We demonstrate that the Cahn-Hilliard equation admits an intrinsic low dimensional behavior: in R I , the number of determining modes (in a Galerkin expansion) is proportional to L 3÷2 ; where L, the diameter of the domain, is also proportional to the number of unstable modes for the linearized equation. Similar results hold for n = 2,3." @default.
- W80897737 created "2016-06-24" @default.
- W80897737 creator A5043528916 @default.
- W80897737 creator A5083442074 @default.
- W80897737 date "1985-01-01" @default.
- W80897737 modified "2023-09-24" @default.
- W80897737 title "Low-Dimensional Behavior of the Pattern Formation Cahn-Hilliard Equation" @default.
- W80897737 cites W1971485640 @default.
- W80897737 cites W2021024312 @default.
- W80897737 cites W2046582129 @default.
- W80897737 cites W2062267070 @default.
- W80897737 doi "https://doi.org/10.1016/s0304-0208(08)72727-0" @default.
- W80897737 hasPublicationYear "1985" @default.
- W80897737 type Work @default.
- W80897737 sameAs 80897737 @default.
- W80897737 citedByCount "10" @default.
- W80897737 countsByYear W808977372016 @default.
- W80897737 countsByYear W808977372022 @default.
- W80897737 crossrefType "book-chapter" @default.
- W80897737 hasAuthorship W80897737A5043528916 @default.
- W80897737 hasAuthorship W80897737A5083442074 @default.
- W80897737 hasConcept C134306372 @default.
- W80897737 hasConcept C192562407 @default.
- W80897737 hasConcept C24822716 @default.
- W80897737 hasConcept C33923547 @default.
- W80897737 hasConcept C93779851 @default.
- W80897737 hasConceptScore W80897737C134306372 @default.
- W80897737 hasConceptScore W80897737C192562407 @default.
- W80897737 hasConceptScore W80897737C24822716 @default.
- W80897737 hasConceptScore W80897737C33923547 @default.
- W80897737 hasConceptScore W80897737C93779851 @default.
- W80897737 hasLocation W808977371 @default.
- W80897737 hasOpenAccess W80897737 @default.
- W80897737 hasPrimaryLocation W808977371 @default.
- W80897737 hasRelatedWork W2050770628 @default.
- W80897737 hasRelatedWork W2052109794 @default.
- W80897737 hasRelatedWork W2141704600 @default.
- W80897737 hasRelatedWork W2401850100 @default.
- W80897737 hasRelatedWork W3117324600 @default.
- W80897737 hasRelatedWork W3157737782 @default.
- W80897737 hasRelatedWork W3161443230 @default.
- W80897737 hasRelatedWork W4210327724 @default.
- W80897737 hasRelatedWork W4226067901 @default.
- W80897737 hasRelatedWork W4313705710 @default.
- W80897737 isParatext "false" @default.
- W80897737 isRetracted "false" @default.
- W80897737 magId "80897737" @default.
- W80897737 workType "book-chapter" @default.