Matches in SemOpenAlex for { <https://semopenalex.org/work/W810147176> ?p ?o ?g. }
- W810147176 endingPage "1950" @default.
- W810147176 startingPage "1933" @default.
- W810147176 abstract "In this paper, we introduce an application of matrix factorization to produce corpus-derived, distributional models of semantics that demonstrate cognitive plausibility. We find that word representations learned by Non-Negative Sparse Embedding (NNSE), a variant of matrix factorization, are sparse, effective, and highly interpretable. To the best of our knowledge, this is the first approach which yields semantic representation of words satisfying these three desirable properties. Though extensive experimental evaluations on multiple real-world tasks and datasets, we demonstrate the superiority of semantic models learned by NNSE over other state-of-the-art baselines." @default.
- W810147176 created "2016-06-24" @default.
- W810147176 creator A5029850297 @default.
- W810147176 creator A5033696194 @default.
- W810147176 creator A5034266240 @default.
- W810147176 date "2012-12-01" @default.
- W810147176 modified "2023-09-23" @default.
- W810147176 title "Learning Effective and Interpretable Semantic Models using Non-Negative Sparse Embedding" @default.
- W810147176 cites W113396932 @default.
- W810147176 cites W1480376833 @default.
- W810147176 cites W1506690472 @default.
- W810147176 cites W1558777661 @default.
- W810147176 cites W1662133657 @default.
- W810147176 cites W168564468 @default.
- W810147176 cites W1836521361 @default.
- W810147176 cites W1878625794 @default.
- W810147176 cites W1880262756 @default.
- W810147176 cites W1978400666 @default.
- W810147176 cites W1981617416 @default.
- W810147176 cites W1983578042 @default.
- W810147176 cites W1984251878 @default.
- W810147176 cites W2005181355 @default.
- W810147176 cites W2053921957 @default.
- W810147176 cites W2057870902 @default.
- W810147176 cites W2078204800 @default.
- W810147176 cites W2078894097 @default.
- W810147176 cites W2080100102 @default.
- W810147176 cites W2080943198 @default.
- W810147176 cites W2102381086 @default.
- W810147176 cites W2103305545 @default.
- W810147176 cites W2112447569 @default.
- W810147176 cites W2116216716 @default.
- W810147176 cites W2117130368 @default.
- W810147176 cites W2128870637 @default.
- W810147176 cites W2140480387 @default.
- W810147176 cites W2141305710 @default.
- W810147176 cites W2147152072 @default.
- W810147176 cites W2150295085 @default.
- W810147176 cites W2152444902 @default.
- W810147176 cites W2158139315 @default.
- W810147176 cites W2159426623 @default.
- W810147176 cites W2164019165 @default.
- W810147176 cites W2165599843 @default.
- W810147176 cites W2166776180 @default.
- W810147176 cites W2167949727 @default.
- W810147176 cites W2168217710 @default.
- W810147176 cites W2170682101 @default.
- W810147176 cites W23084001 @default.
- W810147176 cites W2327471688 @default.
- W810147176 cites W2399561077 @default.
- W810147176 cites W2401768650 @default.
- W810147176 cites W3197748241 @default.
- W810147176 cites W41718274 @default.
- W810147176 cites W3005347330 @default.
- W810147176 hasPublicationYear "2012" @default.
- W810147176 type Work @default.
- W810147176 sameAs 810147176 @default.
- W810147176 citedByCount "95" @default.
- W810147176 countsByYear W8101471762013 @default.
- W810147176 countsByYear W8101471762014 @default.
- W810147176 countsByYear W8101471762015 @default.
- W810147176 countsByYear W8101471762016 @default.
- W810147176 countsByYear W8101471762017 @default.
- W810147176 countsByYear W8101471762018 @default.
- W810147176 countsByYear W8101471762019 @default.
- W810147176 countsByYear W8101471762020 @default.
- W810147176 countsByYear W8101471762021 @default.
- W810147176 crossrefType "proceedings-article" @default.
- W810147176 hasAuthorship W810147176A5029850297 @default.
- W810147176 hasAuthorship W810147176A5033696194 @default.
- W810147176 hasAuthorship W810147176A5034266240 @default.
- W810147176 hasConcept C119857082 @default.
- W810147176 hasConcept C121332964 @default.
- W810147176 hasConcept C124066611 @default.
- W810147176 hasConcept C130318100 @default.
- W810147176 hasConcept C152671427 @default.
- W810147176 hasConcept C153180895 @default.
- W810147176 hasConcept C154945302 @default.
- W810147176 hasConcept C158693339 @default.
- W810147176 hasConcept C163716315 @default.
- W810147176 hasConcept C17744445 @default.
- W810147176 hasConcept C184337299 @default.
- W810147176 hasConcept C199360897 @default.
- W810147176 hasConcept C199539241 @default.
- W810147176 hasConcept C204321447 @default.
- W810147176 hasConcept C2776359362 @default.
- W810147176 hasConcept C2777462759 @default.
- W810147176 hasConcept C2778828372 @default.
- W810147176 hasConcept C41008148 @default.
- W810147176 hasConcept C41608201 @default.
- W810147176 hasConcept C42355184 @default.
- W810147176 hasConcept C56372850 @default.
- W810147176 hasConcept C62520636 @default.
- W810147176 hasConcept C80444323 @default.
- W810147176 hasConcept C94625758 @default.
- W810147176 hasConceptScore W810147176C119857082 @default.
- W810147176 hasConceptScore W810147176C121332964 @default.
- W810147176 hasConceptScore W810147176C124066611 @default.