Matches in SemOpenAlex for { <https://semopenalex.org/work/W810551753> ?p ?o ?g. }
- W810551753 abstract "NUMERICAL STUDY OF FULLY DEVELOPED LAMINAR AND TURBULENT FLOW THROUGH MICROCHANNELS WITH LONGITUDINAL MICROSTRUCTURES Kevin B. Jeffs Department of Mechanical Engineering Master of Science Due to the increase of application in a number of emerging technologies, a growing amount of research has focused on the reduction of drag in microfluidic transport. A novel approach reported in the recent literature is to fabricate micro-ribs and cavities in the channel wall that are then treated with a hydrophobic coating. Such surfaces have been termed superor ultrahydrophobic and the contact area between the flowing liquid and the solid wall is greatly reduced. Further, due to the scale of the micropatterned structures, the liquid is unable to wet the cavity and a liquid meniscus is formed between ribs. This creates a liquid-vapor interface at the cavity regions and renders surfaces with alternating regions of no-slip and of reduced shear on the microscale. This thesis reports the numerical study of hydrodynamically fully-developed laminar and turbulent flows through a parallel plate channel with walls exhibiting microribs and cavities oriented parallel to the flow direction, where fully developed turbulent flow is considered in a time-averaged sense. Three laminar flow models are implemented to investigate the liquid-vapor interface and to account for the effects of the vapor motion in the cavity regions. For each of the laminar flow models, the liquid-vapor interface was idealized as a flat interface. As a benchmark for following laminar flow models, the first model considers the case of a vanishing shear stress at the interface between the liquid and vapor domains. Effects of the vapor motion in the cavity are then accounted for in a one-dimensional cavity model where the vapor velocity is considered to be dependent on the wall normal coordinate only, followed by a two-dimensional cavity model that accounts for the vapor velocitys dependence on the transverse coordinate as well. The vapor cavity is modeled analytically and is coupled to the liquid domain by equating the fluid velocities and shear stresses at the liquid-vapor interface. In the turbulent flow model the liquid-vapor interface is idealized as a flat interface with a zero shear stress boundary condition. In general the numerical predictions show a reduction in the total frictional resistance as the cavity width is increased relative to the channel width, the channel height-to-width aspect ratio is decreased, and the vapor cavity depth is increased. The frictional resistance is also reduced with increased Reynolds number in the turbulent flow case. In the range of parameters examined for each fluid flow regime, reductions in drag as high as 91% and 90% are reported for the laminar flow and turbulent flow models, respectively. Under similar conditions however, the turbulent flow results indicate a greater reduction in flow resistance than for the laminar flow scenario. Based on an analysis of the obtained data, analytical expressions are proposed for both laminar and turbulent flow which facilitates the prediction of the frictional resistance." @default.
- W810551753 created "2016-06-24" @default.
- W810551753 creator A5013521860 @default.
- W810551753 date "2007-01-01" @default.
- W810551753 modified "2023-09-26" @default.
- W810551753 title "Numerical Study of Fully Developed Laminar and Turbulent Flow Through Microchannels with Longitudinal Microstructures" @default.
- W810551753 cites W1586459037 @default.
- W810551753 cites W1969565648 @default.
- W810551753 cites W1972217699 @default.
- W810551753 cites W1974097079 @default.
- W810551753 cites W1982443634 @default.
- W810551753 cites W1984645605 @default.
- W810551753 cites W1985841786 @default.
- W810551753 cites W1991783598 @default.
- W810551753 cites W1991931447 @default.
- W810551753 cites W1995622382 @default.
- W810551753 cites W1998686765 @default.
- W810551753 cites W2005705329 @default.
- W810551753 cites W2006035843 @default.
- W810551753 cites W2007582957 @default.
- W810551753 cites W2012519868 @default.
- W810551753 cites W2019624185 @default.
- W810551753 cites W2022232232 @default.
- W810551753 cites W2023866162 @default.
- W810551753 cites W2030248190 @default.
- W810551753 cites W2031007992 @default.
- W810551753 cites W2044141952 @default.
- W810551753 cites W2044413148 @default.
- W810551753 cites W2049197120 @default.
- W810551753 cites W2050194334 @default.
- W810551753 cites W2058825130 @default.
- W810551753 cites W2068558476 @default.
- W810551753 cites W2080262178 @default.
- W810551753 cites W2082404698 @default.
- W810551753 cites W2084807890 @default.
- W810551753 cites W2092668541 @default.
- W810551753 cites W2095217690 @default.
- W810551753 cites W2100167396 @default.
- W810551753 cites W2109156104 @default.
- W810551753 cites W2114157430 @default.
- W810551753 cites W2119267460 @default.
- W810551753 cites W2128733461 @default.
- W810551753 cites W2130550265 @default.
- W810551753 cites W2145637811 @default.
- W810551753 cites W2163759605 @default.
- W810551753 cites W2171761620 @default.
- W810551753 cites W2324018196 @default.
- W810551753 cites W2328024919 @default.
- W810551753 hasPublicationYear "2007" @default.
- W810551753 type Work @default.
- W810551753 sameAs 810551753 @default.
- W810551753 citedByCount "1" @default.
- W810551753 crossrefType "journal-article" @default.
- W810551753 hasAuthorship W810551753A5013521860 @default.
- W810551753 hasConcept C121332964 @default.
- W810551753 hasConcept C145420912 @default.
- W810551753 hasConcept C159985019 @default.
- W810551753 hasConcept C179428855 @default.
- W810551753 hasConcept C180925781 @default.
- W810551753 hasConcept C192562407 @default.
- W810551753 hasConcept C196558001 @default.
- W810551753 hasConcept C21141959 @default.
- W810551753 hasConcept C2777701225 @default.
- W810551753 hasConcept C33923547 @default.
- W810551753 hasConcept C57879066 @default.
- W810551753 hasConcept C76563973 @default.
- W810551753 hasConcept C77576233 @default.
- W810551753 hasConcept C77653498 @default.
- W810551753 hasConceptScore W810551753C121332964 @default.
- W810551753 hasConceptScore W810551753C145420912 @default.
- W810551753 hasConceptScore W810551753C159985019 @default.
- W810551753 hasConceptScore W810551753C179428855 @default.
- W810551753 hasConceptScore W810551753C180925781 @default.
- W810551753 hasConceptScore W810551753C192562407 @default.
- W810551753 hasConceptScore W810551753C196558001 @default.
- W810551753 hasConceptScore W810551753C21141959 @default.
- W810551753 hasConceptScore W810551753C2777701225 @default.
- W810551753 hasConceptScore W810551753C33923547 @default.
- W810551753 hasConceptScore W810551753C57879066 @default.
- W810551753 hasConceptScore W810551753C76563973 @default.
- W810551753 hasConceptScore W810551753C77576233 @default.
- W810551753 hasConceptScore W810551753C77653498 @default.
- W810551753 hasLocation W8105517531 @default.
- W810551753 hasOpenAccess W810551753 @default.
- W810551753 hasPrimaryLocation W8105517531 @default.
- W810551753 hasRelatedWork W1971912870 @default.
- W810551753 hasRelatedWork W1972489359 @default.
- W810551753 hasRelatedWork W1992961500 @default.
- W810551753 hasRelatedWork W2003558459 @default.
- W810551753 hasRelatedWork W2027930352 @default.
- W810551753 hasRelatedWork W2053038338 @default.
- W810551753 hasRelatedWork W2056270018 @default.
- W810551753 hasRelatedWork W2068128078 @default.
- W810551753 hasRelatedWork W2073685346 @default.
- W810551753 hasRelatedWork W2999381110 @default.
- W810551753 hasRelatedWork W3022258708 @default.
- W810551753 hasRelatedWork W3024348137 @default.
- W810551753 hasRelatedWork W3026268511 @default.
- W810551753 hasRelatedWork W3027958406 @default.
- W810551753 hasRelatedWork W3033178006 @default.