Matches in SemOpenAlex for { <https://semopenalex.org/work/W811006579> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W811006579 abstract "The nonlinear modeling capabilities of artificial neural networks (ANN’s) are renowned in the field of artificial intelligence (Al) for capturing knowledge that can be very difficult to understand otherwise. Their ability to be trained on representative data within a particular problem domain and generalise over a set of data make them efficient predictive models. One problem domain that contains complex data that would benefit from the predictive capabilities of ANN’s is that of optical emission spectra (OES). OES is an important diagnostic for monitoring plasma species within plasma processing. Normally, OES spectral interpretation requires significant prior expertise from a spectroscopist. One way of alleviating this intensive demand in order to quickly interpret OES spectra is to interpret the data using an intelligent pattern recognition technique like ANN’s. This thesis investigates and presents MLP ANN models that can successfully classify chemical species within OES spectral patterns. The primary contribution of the thesis is the creation of deployable ANN species models that can predict OES spectral line sizes directly from six controllable input process parameters; and the implementation of a novel rule extraction procedure to relate the real multi-output values of the spectral line sizes to individual input process parameters. Not only are the trained species models excellent in their predictive capability, but they also provide the foundation for extracting comprehensible rules. A secondary contribution made by this thesis is to present an adapted fuzzy rule extraction system that attaches a quantitative measure of confidence to individual rules. The most significant contribution to the field of Al that is generated from the work presented in the thesis is the fact that the rule extraction procedure utilises predictive ANN species models that employ real continuously valued multi-output data. This is an improvement on rule extraction from trained networks that normally focus on discrete binary outputs" @default.
- W811006579 created "2016-06-24" @default.
- W811006579 creator A5028479266 @default.
- W811006579 date "1999-01-01" @default.
- W811006579 modified "2023-09-26" @default.
- W811006579 title "Identification of chemical species using artificial intelligence to interpret optical emission spectra" @default.
- W811006579 hasPublicationYear "1999" @default.
- W811006579 type Work @default.
- W811006579 sameAs 811006579 @default.
- W811006579 citedByCount "0" @default.
- W811006579 crossrefType "dissertation" @default.
- W811006579 hasAuthorship W811006579A5028479266 @default.
- W811006579 hasConcept C111919701 @default.
- W811006579 hasConcept C116834253 @default.
- W811006579 hasConcept C119857082 @default.
- W811006579 hasConcept C124101348 @default.
- W811006579 hasConcept C153180895 @default.
- W811006579 hasConcept C154945302 @default.
- W811006579 hasConcept C177264268 @default.
- W811006579 hasConcept C199360897 @default.
- W811006579 hasConcept C41008148 @default.
- W811006579 hasConcept C50644808 @default.
- W811006579 hasConcept C58166 @default.
- W811006579 hasConcept C59822182 @default.
- W811006579 hasConcept C86803240 @default.
- W811006579 hasConcept C98045186 @default.
- W811006579 hasConceptScore W811006579C111919701 @default.
- W811006579 hasConceptScore W811006579C116834253 @default.
- W811006579 hasConceptScore W811006579C119857082 @default.
- W811006579 hasConceptScore W811006579C124101348 @default.
- W811006579 hasConceptScore W811006579C153180895 @default.
- W811006579 hasConceptScore W811006579C154945302 @default.
- W811006579 hasConceptScore W811006579C177264268 @default.
- W811006579 hasConceptScore W811006579C199360897 @default.
- W811006579 hasConceptScore W811006579C41008148 @default.
- W811006579 hasConceptScore W811006579C50644808 @default.
- W811006579 hasConceptScore W811006579C58166 @default.
- W811006579 hasConceptScore W811006579C59822182 @default.
- W811006579 hasConceptScore W811006579C86803240 @default.
- W811006579 hasConceptScore W811006579C98045186 @default.
- W811006579 hasLocation W8110065791 @default.
- W811006579 hasOpenAccess W811006579 @default.
- W811006579 hasPrimaryLocation W8110065791 @default.
- W811006579 hasRelatedWork W1562048304 @default.
- W811006579 hasRelatedWork W1975226994 @default.
- W811006579 hasRelatedWork W2035729670 @default.
- W811006579 hasRelatedWork W2185347602 @default.
- W811006579 hasRelatedWork W2188275355 @default.
- W811006579 hasRelatedWork W2652294454 @default.
- W811006579 hasRelatedWork W2887409581 @default.
- W811006579 hasRelatedWork W2896747518 @default.
- W811006579 hasRelatedWork W2963091568 @default.
- W811006579 hasRelatedWork W2966976397 @default.
- W811006579 hasRelatedWork W2972631156 @default.
- W811006579 hasRelatedWork W2986628990 @default.
- W811006579 hasRelatedWork W2990087953 @default.
- W811006579 hasRelatedWork W2991337921 @default.
- W811006579 hasRelatedWork W3095012608 @default.
- W811006579 hasRelatedWork W3104264956 @default.
- W811006579 hasRelatedWork W3106764462 @default.
- W811006579 hasRelatedWork W3124830797 @default.
- W811006579 hasRelatedWork W3196587695 @default.
- W811006579 hasRelatedWork W2484555866 @default.
- W811006579 isParatext "false" @default.
- W811006579 isRetracted "false" @default.
- W811006579 magId "811006579" @default.
- W811006579 workType "dissertation" @default.