Matches in SemOpenAlex for { <https://semopenalex.org/work/W8143622> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W8143622 abstract "Power Quality has been one of the great concerns recently; it due to the increasing number of loads which sensitive to the power disturbance. One of the main issues in power quality problems includes how to localize each disturbance event and recognize its respective type of disturbance more efficiently. Another problem is harmonics problem which is due to nonlinear loads and the source of fault is difficult to detect and diagnose. Thus, it is important to propose an effective feature extraction method in order to build a system with DSP approach to overcome this problem as well as to maintain the power quality. This thesis utilized the concepts of time frequency analysis (TFA), which provides information of the disturbance signal as a function of time and frequency in order to analyze the power disturbance signals due to those signals is finite energy or non-stationary signals. By choosing real and simulated power signals, this study has been carried out over 30 normal signals and 90 signals with power disturbance including sag, swell, interruption, harmonics, transient and frequency variation. Those signals are transformed into time frequency plane using Bdistribution algorithm. Then the important feature vectors or components are extracted using Singular Value Decomposition (SVD) and Principle Component Analysis (PCA). Finally, the distance metric, J, as class separibity between two classes of vectors can be measured using Maximum Margin Criterion (MMC). From the results obtained, the most two of the right singular vector (SVs) become most powerful feature vectors to describe the TFD. The lowest SVs have cyclic structure becomes less significant feature vector which contains noise or redundancy. Furthermore, the projection between two SVs of normal power signal and disturbance power signal shows the plotting of these vectors are overlap or not overlap respectively. If the last two SVs (or either one is last SV) are projected, the plotting almost approached to zero. The most discriminates vectors is the distance between them, MMC shown either that vectors are close to those in the same class (ranges of J is 0.0006 to 0.0045) or far from those in different classes (ranges of J is 0.0045 to 0.0426). The accuracy of using these methods is 95.24%, the sensitivity (or normal signal performance) is 100% and the specificity (performance of power disturbance signal) is 94.4%. As a conclusion, SVD and PCA are useful to apply in TFD to extract important feature vectors then MMC can measure the distance metric between those mean vectors. Furthermore, all the features obtained are useful features and can be used for power disturbance classification and recognition with DSP approach as well as to maintain power quality" @default.
- W8143622 created "2016-06-24" @default.
- W8143622 creator A5089368234 @default.
- W8143622 date "2006-04-01" @default.
- W8143622 modified "2023-09-27" @default.
- W8143622 title "Feature extraction of power disturbance signal using time frequency analysis" @default.
- W8143622 hasPublicationYear "2006" @default.
- W8143622 type Work @default.
- W8143622 sameAs 8143622 @default.
- W8143622 citedByCount "0" @default.
- W8143622 crossrefType "dissertation" @default.
- W8143622 hasAuthorship W8143622A5089368234 @default.
- W8143622 hasConcept C106131492 @default.
- W8143622 hasConcept C119599485 @default.
- W8143622 hasConcept C121332964 @default.
- W8143622 hasConcept C127413603 @default.
- W8143622 hasConcept C137798554 @default.
- W8143622 hasConcept C138885662 @default.
- W8143622 hasConcept C142433447 @default.
- W8143622 hasConcept C151730666 @default.
- W8143622 hasConcept C154945302 @default.
- W8143622 hasConcept C163258240 @default.
- W8143622 hasConcept C165801399 @default.
- W8143622 hasConcept C188414643 @default.
- W8143622 hasConcept C199360897 @default.
- W8143622 hasConcept C22789450 @default.
- W8143622 hasConcept C2775924081 @default.
- W8143622 hasConcept C2776401178 @default.
- W8143622 hasConcept C2777601987 @default.
- W8143622 hasConcept C2779843651 @default.
- W8143622 hasConcept C31972630 @default.
- W8143622 hasConcept C41008148 @default.
- W8143622 hasConcept C41895202 @default.
- W8143622 hasConcept C47446073 @default.
- W8143622 hasConcept C52622490 @default.
- W8143622 hasConcept C62520636 @default.
- W8143622 hasConcept C86803240 @default.
- W8143622 hasConcept C89227174 @default.
- W8143622 hasConceptScore W8143622C106131492 @default.
- W8143622 hasConceptScore W8143622C119599485 @default.
- W8143622 hasConceptScore W8143622C121332964 @default.
- W8143622 hasConceptScore W8143622C127413603 @default.
- W8143622 hasConceptScore W8143622C137798554 @default.
- W8143622 hasConceptScore W8143622C138885662 @default.
- W8143622 hasConceptScore W8143622C142433447 @default.
- W8143622 hasConceptScore W8143622C151730666 @default.
- W8143622 hasConceptScore W8143622C154945302 @default.
- W8143622 hasConceptScore W8143622C163258240 @default.
- W8143622 hasConceptScore W8143622C165801399 @default.
- W8143622 hasConceptScore W8143622C188414643 @default.
- W8143622 hasConceptScore W8143622C199360897 @default.
- W8143622 hasConceptScore W8143622C22789450 @default.
- W8143622 hasConceptScore W8143622C2775924081 @default.
- W8143622 hasConceptScore W8143622C2776401178 @default.
- W8143622 hasConceptScore W8143622C2777601987 @default.
- W8143622 hasConceptScore W8143622C2779843651 @default.
- W8143622 hasConceptScore W8143622C31972630 @default.
- W8143622 hasConceptScore W8143622C41008148 @default.
- W8143622 hasConceptScore W8143622C41895202 @default.
- W8143622 hasConceptScore W8143622C47446073 @default.
- W8143622 hasConceptScore W8143622C52622490 @default.
- W8143622 hasConceptScore W8143622C62520636 @default.
- W8143622 hasConceptScore W8143622C86803240 @default.
- W8143622 hasConceptScore W8143622C89227174 @default.
- W8143622 hasLocation W81436221 @default.
- W8143622 hasOpenAccess W8143622 @default.
- W8143622 hasPrimaryLocation W81436221 @default.
- W8143622 hasRelatedWork W2037325740 @default.
- W8143622 hasRelatedWork W2188414319 @default.
- W8143622 hasRelatedWork W2335752704 @default.
- W8143622 hasRelatedWork W2615417988 @default.
- W8143622 hasRelatedWork W2734897736 @default.
- W8143622 hasRelatedWork W2800659502 @default.
- W8143622 hasRelatedWork W2899760806 @default.
- W8143622 hasRelatedWork W2914332452 @default.
- W8143622 hasRelatedWork W2945803074 @default.
- W8143622 hasRelatedWork W2948503297 @default.
- W8143622 hasRelatedWork W2958652116 @default.
- W8143622 hasRelatedWork W2991340846 @default.
- W8143622 hasRelatedWork W3173420330 @default.
- W8143622 hasRelatedWork W3201787852 @default.
- W8143622 hasRelatedWork W48636222 @default.
- W8143622 hasRelatedWork W2182414855 @default.
- W8143622 hasRelatedWork W2831255330 @default.
- W8143622 hasRelatedWork W2931103056 @default.
- W8143622 hasRelatedWork W2956940713 @default.
- W8143622 hasRelatedWork W3002715890 @default.
- W8143622 isParatext "false" @default.
- W8143622 isRetracted "false" @default.
- W8143622 magId "8143622" @default.
- W8143622 workType "dissertation" @default.