Matches in SemOpenAlex for { <https://semopenalex.org/work/W814756876> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W814756876 endingPage "36" @default.
- W814756876 startingPage "29" @default.
- W814756876 abstract "In this work a fractional oscillator equation is considered. This type of equation includes a composition of left and right fractional derivatives. A scheme based on the variational Rayleigh-Ritz method is proposed to obtain a numerical solution of the problem. Introduction Fractional oscillator equation is a type of equation which includes a composition of left and right fractional derivatives. This type of equations appears in theoretical fractional mechanics while using the minimum action principle and fractional integration by parts rule. Riewe [1, 2] was the first author who used this method in derivation of fractional differential equations in mechanics. Later sequential Lagrangian and Hamiltonian approaches to the problem were proposed (see for example, [3-10]). Using the fixed point theorems [11-13] one can obtain analytical results. Unfortunately, this solution is represented by series of alternately left and right fractional integrals and therefore is difficult in any practical calculations. In order to generate analytical solution Klimek in [14] shows an application of the Mellin transform, but this solution is represented by complicated series of special functions. Analytical results obtained so far are inspiration to look for approximate solutions. In [15] some approximate solutions based on Fractional Power Series, for a class of Fractional Optimal Control problems is presented. In this paper a numerical scheme based on Rayleigh-Ritz method [16, 17] for fractional oscillator equation is proposed. 1. Basic definitions and formulation of the problem We recall some definitions of the fractional operators [18]: – left fractional Riemann-Liouville integral: ( ) ( ) ( ) ( ) 0 1 0 1 : 0 t f s I f t ds t t s α α α + − = > Γ − ∫ (1) Please cite this article as: Tomasz Blaszczyk, Application of the Rayleigh-Ritz method for solving fractional oscillator equation, Scientific Research of the Institute of Mathematics and Computer Science, 2009, Volume 8, Issue 2, pages 29-36. The website: http://www.amcm.pcz.pl/" @default.
- W814756876 created "2016-06-24" @default.
- W814756876 creator A5075034331 @default.
- W814756876 date "2009-01-01" @default.
- W814756876 modified "2023-09-24" @default.
- W814756876 title "An application of the Rayleigh-Ritz method for solving fractional oscillator equation" @default.
- W814756876 cites W1584611818 @default.
- W814756876 cites W1624136914 @default.
- W814756876 cites W1644646652 @default.
- W814756876 cites W1647178278 @default.
- W814756876 cites W1972617948 @default.
- W814756876 cites W1979976821 @default.
- W814756876 cites W1982960063 @default.
- W814756876 cites W2015882123 @default.
- W814756876 cites W2027210259 @default.
- W814756876 cites W2062163287 @default.
- W814756876 cites W2068345729 @default.
- W814756876 cites W2075469740 @default.
- W814756876 cites W2075869604 @default.
- W814756876 cites W2084795903 @default.
- W814756876 cites W3105494195 @default.
- W814756876 cites W84759582 @default.
- W814756876 hasPublicationYear "2009" @default.
- W814756876 type Work @default.
- W814756876 sameAs 814756876 @default.
- W814756876 citedByCount "5" @default.
- W814756876 countsByYear W8147568762014 @default.
- W814756876 countsByYear W8147568762015 @default.
- W814756876 crossrefType "journal-article" @default.
- W814756876 hasAuthorship W814756876A5075034331 @default.
- W814756876 hasConcept C134306372 @default.
- W814756876 hasConcept C154249771 @default.
- W814756876 hasConcept C182310444 @default.
- W814756876 hasConcept C18903297 @default.
- W814756876 hasConcept C2777299769 @default.
- W814756876 hasConcept C28826006 @default.
- W814756876 hasConcept C33923547 @default.
- W814756876 hasConcept C51544822 @default.
- W814756876 hasConcept C70940138 @default.
- W814756876 hasConcept C73905626 @default.
- W814756876 hasConcept C78045399 @default.
- W814756876 hasConcept C86803240 @default.
- W814756876 hasConceptScore W814756876C134306372 @default.
- W814756876 hasConceptScore W814756876C154249771 @default.
- W814756876 hasConceptScore W814756876C182310444 @default.
- W814756876 hasConceptScore W814756876C18903297 @default.
- W814756876 hasConceptScore W814756876C2777299769 @default.
- W814756876 hasConceptScore W814756876C28826006 @default.
- W814756876 hasConceptScore W814756876C33923547 @default.
- W814756876 hasConceptScore W814756876C51544822 @default.
- W814756876 hasConceptScore W814756876C70940138 @default.
- W814756876 hasConceptScore W814756876C73905626 @default.
- W814756876 hasConceptScore W814756876C78045399 @default.
- W814756876 hasConceptScore W814756876C86803240 @default.
- W814756876 hasLocation W8147568761 @default.
- W814756876 hasOpenAccess W814756876 @default.
- W814756876 hasPrimaryLocation W8147568761 @default.
- W814756876 hasRelatedWork W1584611818 @default.
- W814756876 hasRelatedWork W2015882123 @default.
- W814756876 hasRelatedWork W2084795903 @default.
- W814756876 hasRelatedWork W2111423585 @default.
- W814756876 hasRelatedWork W2167582693 @default.
- W814756876 hasRelatedWork W2187947874 @default.
- W814756876 hasRelatedWork W2364520436 @default.
- W814756876 hasRelatedWork W2564414359 @default.
- W814756876 hasRelatedWork W2746915367 @default.
- W814756876 hasRelatedWork W2787108455 @default.
- W814756876 hasRelatedWork W2794685857 @default.
- W814756876 hasRelatedWork W2809985998 @default.
- W814756876 hasRelatedWork W2890554184 @default.
- W814756876 hasRelatedWork W2948516414 @default.
- W814756876 hasRelatedWork W2965092881 @default.
- W814756876 hasRelatedWork W2999964031 @default.
- W814756876 hasRelatedWork W3035774213 @default.
- W814756876 hasRelatedWork W3129420110 @default.
- W814756876 hasRelatedWork W3162501515 @default.
- W814756876 hasRelatedWork W3194641936 @default.
- W814756876 hasVolume "8" @default.
- W814756876 isParatext "false" @default.
- W814756876 isRetracted "false" @default.
- W814756876 magId "814756876" @default.
- W814756876 workType "article" @default.