Matches in SemOpenAlex for { <https://semopenalex.org/work/W816823715> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W816823715 endingPage "96" @default.
- W816823715 startingPage "85" @default.
- W816823715 abstract "where Ω ⊂ R is a bounded domain with smooth boundary, λ > 0 and p > 1 are constants and ν is the unit outer normal to ∂Ω. Concerning the existence, multiplicity, and qualitative properties of solutions of (1.1)λ many interesting results have appeared; especially after Ni and Takagi ([NT1]) first discovered the spike-layer structure on the shape of least energy solutions for the subcritical problems, a lot of work has been devoted to the study of qualitative properties of solutions of (1.1)λ. For more references, we refer to [NT2] and [Wz5], in which both the subcritical exponent case (i.e. 1 < p < N+2 N−2 ) and the critical exponent case (i.e. p = N+2 N−2 ) are surveyed. In this paper, we shall focus on the case where Ω is a spherically symmetric domain, especially on the case where Ω is a ball domain. We are mainly interested in the existence and the shape of nonradial solutions of (1.1)λ. When we replace the Neumann boundary condition by the Dirichlet boundary condition the well known Gidas-Ni-Nirenberg result ([GNN]) asserts that any positive solutions must be radially symmetric. However, we shall see that contrary to its Dirichlet counterpart, (1.1)λ possesses many nonradial solutions when Ω is a ball domain. In [Wz6], we have presented an approach to this problem to construct multi-peaked solutions for (1.1)λ with the critical Sobolev exponent when Ω is a symmetric domain. We" @default.
- W816823715 created "2016-06-24" @default.
- W816823715 creator A5054358636 @default.
- W816823715 date "1996-01-01" @default.
- W816823715 modified "2023-10-14" @default.
- W816823715 title "Nonradial solutions of nonlinear Neumann problems in radially symmetric domains" @default.
- W816823715 cites W108952549 @default.
- W816823715 cites W1527529737 @default.
- W816823715 cites W1546072934 @default.
- W816823715 cites W1569964927 @default.
- W816823715 cites W1575983931 @default.
- W816823715 cites W1588528702 @default.
- W816823715 cites W193938403 @default.
- W816823715 cites W1964897903 @default.
- W816823715 cites W1966165996 @default.
- W816823715 cites W1992333872 @default.
- W816823715 cites W2023723001 @default.
- W816823715 cites W2034145387 @default.
- W816823715 cites W2038928461 @default.
- W816823715 cites W2042892258 @default.
- W816823715 cites W2046930433 @default.
- W816823715 cites W2048657159 @default.
- W816823715 cites W2060355070 @default.
- W816823715 cites W2066046051 @default.
- W816823715 cites W2067861613 @default.
- W816823715 cites W2119244918 @default.
- W816823715 cites W2273924757 @default.
- W816823715 cites W2495035860 @default.
- W816823715 cites W3217362339 @default.
- W816823715 cites W81194880 @default.
- W816823715 cites W2779923930 @default.
- W816823715 doi "https://doi.org/10.4064/-35-1-85-96" @default.
- W816823715 hasPublicationYear "1996" @default.
- W816823715 type Work @default.
- W816823715 sameAs 816823715 @default.
- W816823715 citedByCount "3" @default.
- W816823715 crossrefType "journal-article" @default.
- W816823715 hasAuthorship W816823715A5054358636 @default.
- W816823715 hasBestOaLocation W8168237151 @default.
- W816823715 hasConcept C121332964 @default.
- W816823715 hasConcept C134306372 @default.
- W816823715 hasConcept C158622935 @default.
- W816823715 hasConcept C163681178 @default.
- W816823715 hasConcept C182310444 @default.
- W816823715 hasConcept C202444582 @default.
- W816823715 hasConcept C28826006 @default.
- W816823715 hasConcept C33923547 @default.
- W816823715 hasConcept C62520636 @default.
- W816823715 hasConcept C80469333 @default.
- W816823715 hasConceptScore W816823715C121332964 @default.
- W816823715 hasConceptScore W816823715C134306372 @default.
- W816823715 hasConceptScore W816823715C158622935 @default.
- W816823715 hasConceptScore W816823715C163681178 @default.
- W816823715 hasConceptScore W816823715C182310444 @default.
- W816823715 hasConceptScore W816823715C202444582 @default.
- W816823715 hasConceptScore W816823715C28826006 @default.
- W816823715 hasConceptScore W816823715C33923547 @default.
- W816823715 hasConceptScore W816823715C62520636 @default.
- W816823715 hasConceptScore W816823715C80469333 @default.
- W816823715 hasIssue "1" @default.
- W816823715 hasLocation W8168237151 @default.
- W816823715 hasOpenAccess W816823715 @default.
- W816823715 hasPrimaryLocation W8168237151 @default.
- W816823715 hasRelatedWork W1597811794 @default.
- W816823715 hasRelatedWork W1974870779 @default.
- W816823715 hasRelatedWork W2035619079 @default.
- W816823715 hasRelatedWork W2073925946 @default.
- W816823715 hasRelatedWork W2075968915 @default.
- W816823715 hasRelatedWork W2149376139 @default.
- W816823715 hasRelatedWork W2326718950 @default.
- W816823715 hasRelatedWork W2952194934 @default.
- W816823715 hasRelatedWork W4308626403 @default.
- W816823715 hasRelatedWork W2889274241 @default.
- W816823715 hasVolume "35" @default.
- W816823715 isParatext "false" @default.
- W816823715 isRetracted "false" @default.
- W816823715 magId "816823715" @default.
- W816823715 workType "article" @default.