Matches in SemOpenAlex for { <https://semopenalex.org/work/W817616530> ?p ?o ?g. }
- W817616530 endingPage "290" @default.
- W817616530 startingPage "280" @default.
- W817616530 abstract "Infectious diarrhea is an important public health problem around the world. Meteorological factors have been strongly linked to the incidence of infectious diarrhea. Therefore, accurately forecast the number of infectious diarrhea under the effect of meteorological factors is critical to control efforts. In recent decades, development of artificial neural network (ANN) models, as predictors for infectious diseases, have created a great change in infectious disease predictions. In this paper, a three layered feed-forward back-propagation ANN (BPNN) model trained by Levenberg–Marquardt algorithm was developed to predict the weekly number of infectious diarrhea by using meteorological factors as input variable. The meteorological factors were chosen based on the strongly relativity with infectious diarrhea. Also, as a comparison study, the support vector regression (SVR), random forests regression (RFR) and multivariate linear regression (MLR) also were applied as prediction models using the same dataset in addition to BPNN model. The 5-fold cross validation technique was used to avoid the problem of overfitting in models training period. Further, since one of the drawbacks of ANN models is the interpretation of the final model in terms of the relative importance of input variables, a sensitivity analysis is performed to determine the parametric influence on the model outputs. The simulation results obtained from the BPNN confirms the feasibility of this model in terms of applicability and shows better agreement with the actual data, compared to those from the SVR, RFR and MLR models. The BPNN model, described in this paper, is an efficient quantitative tool to evaluate and predict the infectious diarrhea using meteorological factors." @default.
- W817616530 created "2016-06-24" @default.
- W817616530 creator A5012136645 @default.
- W817616530 creator A5015970624 @default.
- W817616530 creator A5052883326 @default.
- W817616530 creator A5068884216 @default.
- W817616530 creator A5088162640 @default.
- W817616530 date "2015-10-01" @default.
- W817616530 modified "2023-10-05" @default.
- W817616530 title "Artificial neural networks for infectious diarrhea prediction using meteorological factors in Shanghai (China)" @default.
- W817616530 cites W1586335931 @default.
- W817616530 cites W1971894625 @default.
- W817616530 cites W1975386096 @default.
- W817616530 cites W1976070030 @default.
- W817616530 cites W1984069615 @default.
- W817616530 cites W1984144065 @default.
- W817616530 cites W1985364209 @default.
- W817616530 cites W1987593302 @default.
- W817616530 cites W1989876410 @default.
- W817616530 cites W1994104361 @default.
- W817616530 cites W2000252144 @default.
- W817616530 cites W2004489837 @default.
- W817616530 cites W2004779075 @default.
- W817616530 cites W2006453030 @default.
- W817616530 cites W2016857257 @default.
- W817616530 cites W2018274364 @default.
- W817616530 cites W2023350506 @default.
- W817616530 cites W2024659789 @default.
- W817616530 cites W2024733560 @default.
- W817616530 cites W2025805552 @default.
- W817616530 cites W2026080067 @default.
- W817616530 cites W2026302091 @default.
- W817616530 cites W2028504497 @default.
- W817616530 cites W2039238531 @default.
- W817616530 cites W2060900973 @default.
- W817616530 cites W2064190988 @default.
- W817616530 cites W2066995518 @default.
- W817616530 cites W2069994642 @default.
- W817616530 cites W2075990178 @default.
- W817616530 cites W2082206269 @default.
- W817616530 cites W2095625135 @default.
- W817616530 cites W2101778643 @default.
- W817616530 cites W2101970700 @default.
- W817616530 cites W2102591853 @default.
- W817616530 cites W2107899042 @default.
- W817616530 cites W2120238938 @default.
- W817616530 cites W2123715374 @default.
- W817616530 cites W2132664750 @default.
- W817616530 cites W2160208155 @default.
- W817616530 cites W2313283265 @default.
- W817616530 doi "https://doi.org/10.1016/j.asoc.2015.05.047" @default.
- W817616530 hasPublicationYear "2015" @default.
- W817616530 type Work @default.
- W817616530 sameAs 817616530 @default.
- W817616530 citedByCount "54" @default.
- W817616530 countsByYear W8176165302015 @default.
- W817616530 countsByYear W8176165302016 @default.
- W817616530 countsByYear W8176165302017 @default.
- W817616530 countsByYear W8176165302018 @default.
- W817616530 countsByYear W8176165302019 @default.
- W817616530 countsByYear W8176165302020 @default.
- W817616530 countsByYear W8176165302021 @default.
- W817616530 countsByYear W8176165302022 @default.
- W817616530 countsByYear W8176165302023 @default.
- W817616530 crossrefType "journal-article" @default.
- W817616530 hasAuthorship W817616530A5012136645 @default.
- W817616530 hasAuthorship W817616530A5015970624 @default.
- W817616530 hasAuthorship W817616530A5052883326 @default.
- W817616530 hasAuthorship W817616530A5068884216 @default.
- W817616530 hasAuthorship W817616530A5088162640 @default.
- W817616530 hasConcept C105795698 @default.
- W817616530 hasConcept C119857082 @default.
- W817616530 hasConcept C12267149 @default.
- W817616530 hasConcept C126322002 @default.
- W817616530 hasConcept C142724271 @default.
- W817616530 hasConcept C151956035 @default.
- W817616530 hasConcept C154945302 @default.
- W817616530 hasConcept C169258074 @default.
- W817616530 hasConcept C22019652 @default.
- W817616530 hasConcept C2779134260 @default.
- W817616530 hasConcept C2779802037 @default.
- W817616530 hasConcept C33923547 @default.
- W817616530 hasConcept C41008148 @default.
- W817616530 hasConcept C45804977 @default.
- W817616530 hasConcept C48921125 @default.
- W817616530 hasConcept C50644808 @default.
- W817616530 hasConcept C524204448 @default.
- W817616530 hasConcept C71924100 @default.
- W817616530 hasConceptScore W817616530C105795698 @default.
- W817616530 hasConceptScore W817616530C119857082 @default.
- W817616530 hasConceptScore W817616530C12267149 @default.
- W817616530 hasConceptScore W817616530C126322002 @default.
- W817616530 hasConceptScore W817616530C142724271 @default.
- W817616530 hasConceptScore W817616530C151956035 @default.
- W817616530 hasConceptScore W817616530C154945302 @default.
- W817616530 hasConceptScore W817616530C169258074 @default.
- W817616530 hasConceptScore W817616530C22019652 @default.
- W817616530 hasConceptScore W817616530C2779134260 @default.