Matches in SemOpenAlex for { <https://semopenalex.org/work/W817946952> ?p ?o ?g. }
- W817946952 abstract "In this thesis, a bundle F ↪→ (M,ω) → B is said to be Lagrangian if (M,ω) is a 2ndimensional symplectic manifold and the fibres are compact and connected Lagrangian submanifolds of (M,ω), i.e. ω|F = 0 for all F . This condition implies that the fibres and the base space are n-dimensional. Such bundles arise naturally in the study of a special class of dynamical systems in Hamiltonian mechanics, namely those called completely integrable Hamiltonian systems. A celebrated theorem due to Liouville [39], Mineur [46] and Arnol‘d [2] provides a semi-global (i.e. in the neighbourhood of a fibre) symplectic classification of Lagrangian bundles, given by the existence of local action-angle coordinates. A proof of this theorem, due to Markus and Meyer [41] and Duistermaat [20], shows that the fibres and base space of a Lagrangian bundle are naturally integral affine manifolds, i.e. they admit atlases whose changes of coordinates can be extended to affine transformations of Rn which preserve the standard cocompact lattice Zn ⊂ Rn. This thesis studies the problem of constructing Lagrangian bundles from the point of view of affinely flat geometry. The first step to study this question is to construct topological universal Lagrangian bundles using the affine structure on the fibres. These bundles classify Lagrangian bundles topologically in the sense that every such bundle arises as the pullback of one universal bundle. However, not all bundles which are isomorphic to the pullback of a topological universal Lagrangian bundle are Lagrangian, as there exist further smooth and symplectic invariants. Even for bundles which admit local action-angle coordinates (these are classified up to isomorphism by topological universal Lagrangian bundles), there is a cohomological obstruction to the existence of an appropriate symplectic form on the total space, which has been studied by Dazord and Delzant in [18]. Such bundles are called almost Lagrangian. The second half of this thesis constructs the obstruction of Dazord and Delzant using the spectral sequence of a topological universal Lagrangian bundle. Moreover, this obstruction is shown to be related to a cohomological invariant associated to the integral affine geometry of the base space, called the radiance obstruction. In particular, it is shown that the integral affine geometry of the base space of an almost Lagrangian bundle determines whether the bundle is, in fact, Lagrangian. New examples of (almost) Lagrangian bundles are provided to illustrate the theory developed." @default.
- W817946952 created "2016-06-24" @default.
- W817946952 creator A5007799314 @default.
- W817946952 date "2011-06-28" @default.
- W817946952 modified "2023-10-17" @default.
- W817946952 title "Integral affine geometry of Lagrangian bundles" @default.
- W817946952 cites W1486693848 @default.
- W817946952 cites W1521337395 @default.
- W817946952 cites W1541776832 @default.
- W817946952 cites W1543748311 @default.
- W817946952 cites W1564862916 @default.
- W817946952 cites W1573408762 @default.
- W817946952 cites W1577158533 @default.
- W817946952 cites W1577590888 @default.
- W817946952 cites W1592685285 @default.
- W817946952 cites W1627793989 @default.
- W817946952 cites W1965645274 @default.
- W817946952 cites W1966670646 @default.
- W817946952 cites W1969506193 @default.
- W817946952 cites W1973852416 @default.
- W817946952 cites W1980139506 @default.
- W817946952 cites W1982015992 @default.
- W817946952 cites W1983033166 @default.
- W817946952 cites W1988842602 @default.
- W817946952 cites W1990074842 @default.
- W817946952 cites W1991729267 @default.
- W817946952 cites W1998473592 @default.
- W817946952 cites W1998983272 @default.
- W817946952 cites W2004244653 @default.
- W817946952 cites W2033325127 @default.
- W817946952 cites W2043931577 @default.
- W817946952 cites W2046219024 @default.
- W817946952 cites W2050379993 @default.
- W817946952 cites W2061347368 @default.
- W817946952 cites W2062238371 @default.
- W817946952 cites W2064728050 @default.
- W817946952 cites W2066569294 @default.
- W817946952 cites W2085981412 @default.
- W817946952 cites W2088029259 @default.
- W817946952 cites W2089234926 @default.
- W817946952 cites W2092454622 @default.
- W817946952 cites W2108600055 @default.
- W817946952 cites W2109097970 @default.
- W817946952 cites W2113557458 @default.
- W817946952 cites W2125401631 @default.
- W817946952 cites W2158048440 @default.
- W817946952 cites W2312393834 @default.
- W817946952 cites W2314448437 @default.
- W817946952 cites W2323885924 @default.
- W817946952 cites W2578181793 @default.
- W817946952 cites W2584064168 @default.
- W817946952 cites W261160452 @default.
- W817946952 cites W2748565569 @default.
- W817946952 cites W2963639110 @default.
- W817946952 cites W2964012035 @default.
- W817946952 cites W3011439182 @default.
- W817946952 cites W3034906226 @default.
- W817946952 cites W3040586665 @default.
- W817946952 cites W3107709063 @default.
- W817946952 cites W3143833503 @default.
- W817946952 cites W3212292137 @default.
- W817946952 cites W603127477 @default.
- W817946952 hasPublicationYear "2011" @default.
- W817946952 type Work @default.
- W817946952 sameAs 817946952 @default.
- W817946952 citedByCount "0" @default.
- W817946952 crossrefType "dissertation" @default.
- W817946952 hasAuthorship W817946952A5007799314 @default.
- W817946952 hasConcept C126255220 @default.
- W817946952 hasConcept C130787639 @default.
- W817946952 hasConcept C137134375 @default.
- W817946952 hasConcept C146710177 @default.
- W817946952 hasConcept C159985019 @default.
- W817946952 hasConcept C168619227 @default.
- W817946952 hasConcept C192562407 @default.
- W817946952 hasConcept C202444582 @default.
- W817946952 hasConcept C2777680557 @default.
- W817946952 hasConcept C2778134712 @default.
- W817946952 hasConcept C33923547 @default.
- W817946952 hasConcept C53469067 @default.
- W817946952 hasConcept C54486226 @default.
- W817946952 hasConcept C5961521 @default.
- W817946952 hasConcept C92757383 @default.
- W817946952 hasConcept C95857938 @default.
- W817946952 hasConceptScore W817946952C126255220 @default.
- W817946952 hasConceptScore W817946952C130787639 @default.
- W817946952 hasConceptScore W817946952C137134375 @default.
- W817946952 hasConceptScore W817946952C146710177 @default.
- W817946952 hasConceptScore W817946952C159985019 @default.
- W817946952 hasConceptScore W817946952C168619227 @default.
- W817946952 hasConceptScore W817946952C192562407 @default.
- W817946952 hasConceptScore W817946952C202444582 @default.
- W817946952 hasConceptScore W817946952C2777680557 @default.
- W817946952 hasConceptScore W817946952C2778134712 @default.
- W817946952 hasConceptScore W817946952C33923547 @default.
- W817946952 hasConceptScore W817946952C53469067 @default.
- W817946952 hasConceptScore W817946952C54486226 @default.
- W817946952 hasConceptScore W817946952C5961521 @default.
- W817946952 hasConceptScore W817946952C92757383 @default.
- W817946952 hasConceptScore W817946952C95857938 @default.