Matches in SemOpenAlex for { <https://semopenalex.org/work/W81813850> ?p ?o ?g. }
- W81813850 endingPage "458" @default.
- W81813850 startingPage "451" @default.
- W81813850 abstract "Artificial neural networks have proved to be good at time-series forecasting problems, being widely studied at literature. Traditionally, shallow architectures were used due to convergence problems when dealing with deep models. Recent research findings enable deep architectures training, opening a new interesting research area called deep learning. This paper presents a study of deep learning techniques applied to time-series forecasting in a real indoor temperature forecasting task, studying performance due to different hyper-parameter configurations. When using deep models, better generalization performance at test set and an over-fitting reduction has been observed." @default.
- W81813850 created "2016-06-24" @default.
- W81813850 creator A5002395825 @default.
- W81813850 creator A5003560190 @default.
- W81813850 creator A5045935802 @default.
- W81813850 creator A5050362032 @default.
- W81813850 date "2013-01-01" @default.
- W81813850 modified "2023-10-17" @default.
- W81813850 title "Time-Series Forecasting of Indoor Temperature Using Pre-trained Deep Neural Networks" @default.
- W81813850 cites W1586335931 @default.
- W81813850 cites W1599300385 @default.
- W81813850 cites W189843990 @default.
- W81813850 cites W1985453523 @default.
- W81813850 cites W2014928429 @default.
- W81813850 cites W2083974252 @default.
- W81813850 cites W2100495367 @default.
- W81813850 cites W2128076038 @default.
- W81813850 cites W2147800946 @default.
- W81813850 cites W2167088383 @default.
- W81813850 doi "https://doi.org/10.1007/978-3-642-40728-4_57" @default.
- W81813850 hasPublicationYear "2013" @default.
- W81813850 type Work @default.
- W81813850 sameAs 81813850 @default.
- W81813850 citedByCount "37" @default.
- W81813850 countsByYear W818138502015 @default.
- W81813850 countsByYear W818138502016 @default.
- W81813850 countsByYear W818138502017 @default.
- W81813850 countsByYear W818138502018 @default.
- W81813850 countsByYear W818138502019 @default.
- W81813850 countsByYear W818138502020 @default.
- W81813850 countsByYear W818138502021 @default.
- W81813850 countsByYear W818138502022 @default.
- W81813850 countsByYear W818138502023 @default.
- W81813850 crossrefType "book-chapter" @default.
- W81813850 hasAuthorship W81813850A5002395825 @default.
- W81813850 hasAuthorship W81813850A5003560190 @default.
- W81813850 hasAuthorship W81813850A5045935802 @default.
- W81813850 hasAuthorship W81813850A5050362032 @default.
- W81813850 hasConcept C108583219 @default.
- W81813850 hasConcept C119857082 @default.
- W81813850 hasConcept C127413603 @default.
- W81813850 hasConcept C134306372 @default.
- W81813850 hasConcept C143724316 @default.
- W81813850 hasConcept C151406439 @default.
- W81813850 hasConcept C151730666 @default.
- W81813850 hasConcept C154945302 @default.
- W81813850 hasConcept C162324750 @default.
- W81813850 hasConcept C169903167 @default.
- W81813850 hasConcept C177148314 @default.
- W81813850 hasConcept C177264268 @default.
- W81813850 hasConcept C199360897 @default.
- W81813850 hasConcept C201995342 @default.
- W81813850 hasConcept C2777303404 @default.
- W81813850 hasConcept C2780451532 @default.
- W81813850 hasConcept C2984842247 @default.
- W81813850 hasConcept C33923547 @default.
- W81813850 hasConcept C41008148 @default.
- W81813850 hasConcept C50522688 @default.
- W81813850 hasConcept C50644808 @default.
- W81813850 hasConcept C86803240 @default.
- W81813850 hasConceptScore W81813850C108583219 @default.
- W81813850 hasConceptScore W81813850C119857082 @default.
- W81813850 hasConceptScore W81813850C127413603 @default.
- W81813850 hasConceptScore W81813850C134306372 @default.
- W81813850 hasConceptScore W81813850C143724316 @default.
- W81813850 hasConceptScore W81813850C151406439 @default.
- W81813850 hasConceptScore W81813850C151730666 @default.
- W81813850 hasConceptScore W81813850C154945302 @default.
- W81813850 hasConceptScore W81813850C162324750 @default.
- W81813850 hasConceptScore W81813850C169903167 @default.
- W81813850 hasConceptScore W81813850C177148314 @default.
- W81813850 hasConceptScore W81813850C177264268 @default.
- W81813850 hasConceptScore W81813850C199360897 @default.
- W81813850 hasConceptScore W81813850C201995342 @default.
- W81813850 hasConceptScore W81813850C2777303404 @default.
- W81813850 hasConceptScore W81813850C2780451532 @default.
- W81813850 hasConceptScore W81813850C2984842247 @default.
- W81813850 hasConceptScore W81813850C33923547 @default.
- W81813850 hasConceptScore W81813850C41008148 @default.
- W81813850 hasConceptScore W81813850C50522688 @default.
- W81813850 hasConceptScore W81813850C50644808 @default.
- W81813850 hasConceptScore W81813850C86803240 @default.
- W81813850 hasLocation W818138501 @default.
- W81813850 hasOpenAccess W81813850 @default.
- W81813850 hasPrimaryLocation W818138501 @default.
- W81813850 hasRelatedWork W3014300295 @default.
- W81813850 hasRelatedWork W3099765033 @default.
- W81813850 hasRelatedWork W3164822677 @default.
- W81813850 hasRelatedWork W4223943233 @default.
- W81813850 hasRelatedWork W4225161397 @default.
- W81813850 hasRelatedWork W4312200629 @default.
- W81813850 hasRelatedWork W4360585206 @default.
- W81813850 hasRelatedWork W4364306694 @default.
- W81813850 hasRelatedWork W4380075502 @default.
- W81813850 hasRelatedWork W4380086463 @default.
- W81813850 isParatext "false" @default.
- W81813850 isRetracted "false" @default.
- W81813850 magId "81813850" @default.