Matches in SemOpenAlex for { <https://semopenalex.org/work/W818778891> ?p ?o ?g. }
- W818778891 abstract "Zero-knowledge proofs provide a means for a prover to convince a verifier that some claim is true and nothing more. The ability to prove statements while conveying zero information beyond their veracity has profound implications for cryptography and, especially, for its applicability to privacy-enhancing technologies. Unfortunately, the most common zero-knowledge techniques in the literature suffer from poor scalability, which limits their usefulness in many otherwise promising applications. This dissertation addresses the problem of designing communicationand computation-efficient protocols for zero-knowledge proofs and arguments of propositions that comprise many “simple” predicates. In particular, we propose a new formal model in which to analyze batch zero-knowledge protocols and perform the first systematic study of systems for batch zero-knowledge proofs and arguments of knowledge. In the course of this study, we suggest a general construction for batch zero-knowledge proof systems and use it to realize several new protocols suitable for proving knowledge of and relationships among large batches of discrete logarithm (DL) representations in prime-order groups. Our new protocols improve on existing protocols in several ways; for example, among the new protocols is one with lower asymptotic computation cost than any other such system in the literature. We also tackle the problem of constructing batch proofs of partial knowledge, proposing new protocols to prove knowledge of a DL that is equal to at least k-out-of-n other DLs, at most k-out-of-n other DLs, or exactly k-outof-n other DLs. These constructions are particularly interesting as they prove some propositions that appear difficult to prove using existing techniques, even when efficiency is not a primary consideration. We illustrate the applicability of our new techniques by using them to construct efficient protocols for anonymous blacklisting and reputation systems. Thesis examining committee: • Ian Goldberg (PhD Advisor), Associate Professor, University of Waterloo • Douglas R. Stinson, University Professor, University of Waterloo • Alfred Menezes, Professor, University of Waterloo • David Jao, Associate Professor, University of Waterloo • Nicholas J. Hopper, Associate Professor, University of Minnesota" @default.
- W818778891 created "2016-06-24" @default.
- W818778891 creator A5058723492 @default.
- W818778891 date "2014-08-12" @default.
- W818778891 modified "2023-09-26" @default.
- W818778891 title "Efficient Zero-Knowledge Proofs and Applications" @default.
- W818778891 cites W120930527 @default.
- W818778891 cites W134131117 @default.
- W818778891 cites W147290027 @default.
- W818778891 cites W1479826086 @default.
- W818778891 cites W1494775996 @default.
- W818778891 cites W14951761 @default.
- W818778891 cites W1512460175 @default.
- W818778891 cites W1514691579 @default.
- W818778891 cites W1515386533 @default.
- W818778891 cites W1519525564 @default.
- W818778891 cites W1520914943 @default.
- W818778891 cites W1521092767 @default.
- W818778891 cites W1523328738 @default.
- W818778891 cites W1524626384 @default.
- W818778891 cites W1532961226 @default.
- W818778891 cites W1534385083 @default.
- W818778891 cites W1570820619 @default.
- W818778891 cites W1574149717 @default.
- W818778891 cites W1575893707 @default.
- W818778891 cites W1584837050 @default.
- W818778891 cites W1589034595 @default.
- W818778891 cites W1589586740 @default.
- W818778891 cites W1604074479 @default.
- W818778891 cites W1605251367 @default.
- W818778891 cites W1646354800 @default.
- W818778891 cites W1660562555 @default.
- W818778891 cites W1728441211 @default.
- W818778891 cites W174193449 @default.
- W818778891 cites W1803149481 @default.
- W818778891 cites W1837145606 @default.
- W818778891 cites W1851031742 @default.
- W818778891 cites W1857474042 @default.
- W818778891 cites W1909324101 @default.
- W818778891 cites W195801986 @default.
- W818778891 cites W1981115560 @default.
- W818778891 cites W1981703098 @default.
- W818778891 cites W1984808769 @default.
- W818778891 cites W1993242942 @default.
- W818778891 cites W1993920884 @default.
- W818778891 cites W2003753892 @default.
- W818778891 cites W2007216019 @default.
- W818778891 cites W2026642666 @default.
- W818778891 cites W2026892462 @default.
- W818778891 cites W2027891921 @default.
- W818778891 cites W2035098060 @default.
- W818778891 cites W2038228603 @default.
- W818778891 cites W2041180892 @default.
- W818778891 cites W2046550081 @default.
- W818778891 cites W2051738174 @default.
- W818778891 cites W2052267638 @default.
- W818778891 cites W2053599246 @default.
- W818778891 cites W2057636642 @default.
- W818778891 cites W2062429446 @default.
- W818778891 cites W2089460837 @default.
- W818778891 cites W2091469954 @default.
- W818778891 cites W2098538209 @default.
- W818778891 cites W2099000090 @default.
- W818778891 cites W2100460660 @default.
- W818778891 cites W2101770573 @default.
- W818778891 cites W2102632861 @default.
- W818778891 cites W2104648615 @default.
- W818778891 cites W2109365902 @default.
- W818778891 cites W2110836275 @default.
- W818778891 cites W2115256097 @default.
- W818778891 cites W2115501399 @default.
- W818778891 cites W2116556172 @default.
- W818778891 cites W2117065524 @default.
- W818778891 cites W2117685508 @default.
- W818778891 cites W2119103807 @default.
- W818778891 cites W2120766045 @default.
- W818778891 cites W2127052221 @default.
- W818778891 cites W2131559681 @default.
- W818778891 cites W2134409266 @default.
- W818778891 cites W2136975477 @default.
- W818778891 cites W2139044314 @default.
- W818778891 cites W2139114201 @default.
- W818778891 cites W2141040012 @default.
- W818778891 cites W2141420453 @default.
- W818778891 cites W2142968417 @default.
- W818778891 cites W2145801920 @default.
- W818778891 cites W2147504239 @default.
- W818778891 cites W2149092448 @default.
- W818778891 cites W2149250358 @default.
- W818778891 cites W2152688060 @default.
- W818778891 cites W2153193245 @default.
- W818778891 cites W2155690458 @default.
- W818778891 cites W2156186849 @default.
- W818778891 cites W2159171968 @default.
- W818778891 cites W2163538620 @default.
- W818778891 cites W2166462813 @default.
- W818778891 cites W2168970529 @default.
- W818778891 cites W2256167294 @default.
- W818778891 cites W2292779005 @default.
- W818778891 cites W2396392723 @default.