Matches in SemOpenAlex for { <https://semopenalex.org/work/W820319595> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W820319595 abstract "A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily oversimplified to fit the scope of this article, an SVM can be characterized as an algorithm that (1) effects a nonlinear mapping of input vectors into a higher-dimensional feature space and (2) involves a dual formulation of governing equations and constraints. One advantageous feature of the SVM approach is that an objective function (which one seeks to minimize to obtain coefficients that define an SVM mathematical model) is convex, so that unlike in the cases of many NN models, any local minimum of an SVM model is also a global minimum." @default.
- W820319595 created "2016-06-24" @default.
- W820319595 creator A5002524847 @default.
- W820319595 date "2009-05-01" @default.
- W820319595 modified "2023-09-27" @default.
- W820319595 title "Hybrid NN/SVM Computational System for Optimizing Designs" @default.
- W820319595 hasPublicationYear "2009" @default.
- W820319595 type Work @default.
- W820319595 sameAs 820319595 @default.
- W820319595 citedByCount "0" @default.
- W820319595 crossrefType "journal-article" @default.
- W820319595 hasAuthorship W820319595A5002524847 @default.
- W820319595 hasConcept C104114177 @default.
- W820319595 hasConcept C112124176 @default.
- W820319595 hasConcept C11413529 @default.
- W820319595 hasConcept C121332964 @default.
- W820319595 hasConcept C12267149 @default.
- W820319595 hasConcept C126255220 @default.
- W820319595 hasConcept C127413603 @default.
- W820319595 hasConcept C137800194 @default.
- W820319595 hasConcept C154945302 @default.
- W820319595 hasConcept C158622935 @default.
- W820319595 hasConcept C2776330181 @default.
- W820319595 hasConcept C33923547 @default.
- W820319595 hasConcept C41008148 @default.
- W820319595 hasConcept C50644808 @default.
- W820319595 hasConcept C62520636 @default.
- W820319595 hasConcept C66938386 @default.
- W820319595 hasConceptScore W820319595C104114177 @default.
- W820319595 hasConceptScore W820319595C112124176 @default.
- W820319595 hasConceptScore W820319595C11413529 @default.
- W820319595 hasConceptScore W820319595C121332964 @default.
- W820319595 hasConceptScore W820319595C12267149 @default.
- W820319595 hasConceptScore W820319595C126255220 @default.
- W820319595 hasConceptScore W820319595C127413603 @default.
- W820319595 hasConceptScore W820319595C137800194 @default.
- W820319595 hasConceptScore W820319595C154945302 @default.
- W820319595 hasConceptScore W820319595C158622935 @default.
- W820319595 hasConceptScore W820319595C2776330181 @default.
- W820319595 hasConceptScore W820319595C33923547 @default.
- W820319595 hasConceptScore W820319595C41008148 @default.
- W820319595 hasConceptScore W820319595C50644808 @default.
- W820319595 hasConceptScore W820319595C62520636 @default.
- W820319595 hasConceptScore W820319595C66938386 @default.
- W820319595 hasLocation W8203195951 @default.
- W820319595 hasOpenAccess W820319595 @default.
- W820319595 hasPrimaryLocation W8203195951 @default.
- W820319595 hasRelatedWork W1534105771 @default.
- W820319595 hasRelatedWork W1536422508 @default.
- W820319595 hasRelatedWork W1581377726 @default.
- W820319595 hasRelatedWork W2111228309 @default.
- W820319595 hasRelatedWork W2131324727 @default.
- W820319595 hasRelatedWork W2153553700 @default.
- W820319595 hasRelatedWork W2461687944 @default.
- W820319595 hasRelatedWork W2706006366 @default.
- W820319595 hasRelatedWork W2736436689 @default.
- W820319595 hasRelatedWork W2890937966 @default.
- W820319595 hasRelatedWork W2988409347 @default.
- W820319595 hasRelatedWork W2993201754 @default.
- W820319595 hasRelatedWork W3036436580 @default.
- W820319595 hasRelatedWork W3119218154 @default.
- W820319595 hasRelatedWork W3138158617 @default.
- W820319595 hasRelatedWork W3176836041 @default.
- W820319595 hasRelatedWork W3202781492 @default.
- W820319595 hasRelatedWork W3204739184 @default.
- W820319595 hasRelatedWork W341001168 @default.
- W820319595 hasRelatedWork W2821870998 @default.
- W820319595 isParatext "false" @default.
- W820319595 isRetracted "false" @default.
- W820319595 magId "820319595" @default.
- W820319595 workType "article" @default.