Matches in SemOpenAlex for { <https://semopenalex.org/work/W820331505> ?p ?o ?g. }
- W820331505 abstract "Methods for computing an efficient and accurate numerical solution of the real monicunilateral quadratic matrix equation,are few. They are not guaranteed to work on all problems. One of the methods performs asequence of Newton iterations until convergence occurs whilst another is a matrix analogyof the scalar polynomial algorithm. The former fails from a poor starting point and thelatter fails if no dominant solution exists. A recent approach, the Elimination method,is analysed and shown to work on problems for which other methods fail. . The methodrequires the coefficients of the characteristic polynomial of a matrix to be computed andto this end a comparative numerical analysis of a number of methods for computing thecoefficients is performed. A new minimisation approach for solving the quadratic matrixequation is proposed and shown to compare very favourably with existing methods .. A special case of the quadratic matrix equation is the matrix square root problem,where P = o. There have been a number of method proposed for it's solution, the moresuccessful ones being based upon Newton iterations or the Schur factorisation. The Eliminationmethod is used as a basis for generating three methods for solving the matrix squareroot problem. By means of a numerical analysis and results it is shown that for small orderproblems the Elimination methods compare favourably with the existing methods.The algebraic Riccati equation of stochastic and optimal control is,where the solution of interest is the symmetric non-negative definite one. The currentmethods are based on Newton iterations or the determination of the invariant subspace ofthe associated Hamiltonian matrix. A new method based on a reformulation of Newton'smethod is presented. The method reduces the work involved at each iteration by introducinga Schur factorisation and a sparse linear system solver. Numerical results suggestthat it may compare favourably with well-established methods.Central to the numerical issues are the discussions on conditioning, stability and accuracy.For a method to yield accurate results, the problem must be well-conditioned and themethod that solves the problem must be stable-consequently discussions on conditioningand stability feature heavily in this thesis.The units of measure we use to compare the speed of the methods are the operationscount and the Central Processor Unit (CPU) time. We show how the CPU time accuratelyreflects the amount of work done by an algorithm and that the operations counts of thealgorithms correspond with the respective CPU times." @default.
- W820331505 created "2016-06-24" @default.
- W820331505 creator A5089532133 @default.
- W820331505 date "1990-01-01" @default.
- W820331505 modified "2023-09-27" @default.
- W820331505 title "The numerical solution of quadratic matrix equations" @default.
- W820331505 cites W1573717114 @default.
- W820331505 cites W1965502743 @default.
- W820331505 cites W1981334692 @default.
- W820331505 cites W1985242550 @default.
- W820331505 cites W1989314419 @default.
- W820331505 cites W1995258411 @default.
- W820331505 cites W2000008649 @default.
- W820331505 cites W2037025184 @default.
- W820331505 cites W2058428058 @default.
- W820331505 cites W2063291634 @default.
- W820331505 cites W2072792819 @default.
- W820331505 cites W2075341894 @default.
- W820331505 cites W2085203436 @default.
- W820331505 cites W2133945738 @default.
- W820331505 cites W2163334725 @default.
- W820331505 cites W1605889508 @default.
- W820331505 hasPublicationYear "1990" @default.
- W820331505 type Work @default.
- W820331505 sameAs 820331505 @default.
- W820331505 citedByCount "0" @default.
- W820331505 crossrefType "dissertation" @default.
- W820331505 hasAuthorship W820331505A5089532133 @default.
- W820331505 hasConcept C101044782 @default.
- W820331505 hasConcept C106487976 @default.
- W820331505 hasConcept C121332964 @default.
- W820331505 hasConcept C126255220 @default.
- W820331505 hasConcept C126352355 @default.
- W820331505 hasConcept C134306372 @default.
- W820331505 hasConcept C13847129 @default.
- W820331505 hasConcept C158622935 @default.
- W820331505 hasConcept C158693339 @default.
- W820331505 hasConcept C159985019 @default.
- W820331505 hasConcept C192562407 @default.
- W820331505 hasConcept C22629506 @default.
- W820331505 hasConcept C2524010 @default.
- W820331505 hasConcept C28826006 @default.
- W820331505 hasConcept C33923547 @default.
- W820331505 hasConcept C45473103 @default.
- W820331505 hasConcept C47285271 @default.
- W820331505 hasConcept C48753275 @default.
- W820331505 hasConcept C54848796 @default.
- W820331505 hasConcept C57691317 @default.
- W820331505 hasConcept C62520636 @default.
- W820331505 hasConcept C85189116 @default.
- W820331505 hasConcept C90119067 @default.
- W820331505 hasConcept C93779851 @default.
- W820331505 hasConceptScore W820331505C101044782 @default.
- W820331505 hasConceptScore W820331505C106487976 @default.
- W820331505 hasConceptScore W820331505C121332964 @default.
- W820331505 hasConceptScore W820331505C126255220 @default.
- W820331505 hasConceptScore W820331505C126352355 @default.
- W820331505 hasConceptScore W820331505C134306372 @default.
- W820331505 hasConceptScore W820331505C13847129 @default.
- W820331505 hasConceptScore W820331505C158622935 @default.
- W820331505 hasConceptScore W820331505C158693339 @default.
- W820331505 hasConceptScore W820331505C159985019 @default.
- W820331505 hasConceptScore W820331505C192562407 @default.
- W820331505 hasConceptScore W820331505C22629506 @default.
- W820331505 hasConceptScore W820331505C2524010 @default.
- W820331505 hasConceptScore W820331505C28826006 @default.
- W820331505 hasConceptScore W820331505C33923547 @default.
- W820331505 hasConceptScore W820331505C45473103 @default.
- W820331505 hasConceptScore W820331505C47285271 @default.
- W820331505 hasConceptScore W820331505C48753275 @default.
- W820331505 hasConceptScore W820331505C54848796 @default.
- W820331505 hasConceptScore W820331505C57691317 @default.
- W820331505 hasConceptScore W820331505C62520636 @default.
- W820331505 hasConceptScore W820331505C85189116 @default.
- W820331505 hasConceptScore W820331505C90119067 @default.
- W820331505 hasConceptScore W820331505C93779851 @default.
- W820331505 hasLocation W8203315051 @default.
- W820331505 hasOpenAccess W820331505 @default.
- W820331505 hasPrimaryLocation W8203315051 @default.
- W820331505 hasRelatedWork W1600618388 @default.
- W820331505 hasRelatedWork W164235952 @default.
- W820331505 hasRelatedWork W1800875461 @default.
- W820331505 hasRelatedWork W1893516169 @default.
- W820331505 hasRelatedWork W1978855878 @default.
- W820331505 hasRelatedWork W1988909099 @default.
- W820331505 hasRelatedWork W2000856205 @default.
- W820331505 hasRelatedWork W2003086485 @default.
- W820331505 hasRelatedWork W2017413072 @default.
- W820331505 hasRelatedWork W2120074099 @default.
- W820331505 hasRelatedWork W2269135312 @default.
- W820331505 hasRelatedWork W2336021826 @default.
- W820331505 hasRelatedWork W2410411432 @default.
- W820331505 hasRelatedWork W2601746098 @default.
- W820331505 hasRelatedWork W2612425629 @default.
- W820331505 hasRelatedWork W2768899203 @default.
- W820331505 hasRelatedWork W2828963870 @default.
- W820331505 hasRelatedWork W3047412662 @default.
- W820331505 hasRelatedWork W2741620500 @default.
- W820331505 hasRelatedWork W2919386634 @default.
- W820331505 isParatext "false" @default.