Matches in SemOpenAlex for { <https://semopenalex.org/work/W820384619> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W820384619 endingPage "162" @default.
- W820384619 startingPage "146" @default.
- W820384619 abstract "Efficient computation of skyline probability over uncertain preferences has not received much attention in the database community as compared to skyline probability computation over uncertain data. All known algorithms for probabilistic skyline computation over uncertain preferences attempt to find inexact value of skyline probability by resorting to sampling or to approximation scheme. Exact computation of skyline probability for database with uncertain preferences of moderate size is not possible with any of the existing algorithms. In this paper, we propose an efficient algorithm that can compute skyline probability exactly for reasonably large database. The inclusion–exclusion principle is used to express skyline probability in terms of joint probabilities of all possible combination. In this regard we introduce the concept of zero-contributing set which has zero effect in the signed aggregate of joint probabilities. Our algorithm employs a prefix-based k-level absorption to identify zero-contributing sets. It is shown empirically that only a very small portion of exponential search space remains after level wise application of prefix-based absorption. Thus it becomes possible to compute skyline probability with respect to large datasets. Detailed experimental analysis for real and synthetic datasets are reported to corroborate this claim. We also propose an incremental algorithm to compute skyline probability in dynamic scenarios wherein objects are added incrementally. Moreover, the theoretical concepts developed in this paper help to devise an efficient technique to compute skyline probability of all objects in the database. We show that the exponential search space is pruned once and then for each individual object skyline probability can be derived by inspecting a portion of the pruned lattice. We also use a concept of revival of absorbed pairs. We believe that this process is more efficient than computing the skyline probability individually." @default.
- W820384619 created "2016-06-24" @default.
- W820384619 creator A5014904537 @default.
- W820384619 creator A5026588876 @default.
- W820384619 creator A5032847771 @default.
- W820384619 creator A5039761970 @default.
- W820384619 date "2015-12-01" @default.
- W820384619 modified "2023-10-16" @default.
- W820384619 title "Efficient computation for probabilistic skyline over uncertain preferences" @default.
- W820384619 cites W1973664142 @default.
- W820384619 cites W2002422528 @default.
- W820384619 cites W2041984268 @default.
- W820384619 cites W2048553547 @default.
- W820384619 cites W2069301093 @default.
- W820384619 cites W2116396741 @default.
- W820384619 cites W2294226876 @default.
- W820384619 doi "https://doi.org/10.1016/j.ins.2015.06.041" @default.
- W820384619 hasPublicationYear "2015" @default.
- W820384619 type Work @default.
- W820384619 sameAs 820384619 @default.
- W820384619 citedByCount "16" @default.
- W820384619 countsByYear W8203846192016 @default.
- W820384619 countsByYear W8203846192017 @default.
- W820384619 countsByYear W8203846192018 @default.
- W820384619 countsByYear W8203846192019 @default.
- W820384619 countsByYear W8203846192020 @default.
- W820384619 countsByYear W8203846192021 @default.
- W820384619 crossrefType "journal-article" @default.
- W820384619 hasAuthorship W820384619A5014904537 @default.
- W820384619 hasAuthorship W820384619A5026588876 @default.
- W820384619 hasAuthorship W820384619A5032847771 @default.
- W820384619 hasAuthorship W820384619A5039761970 @default.
- W820384619 hasConcept C11413529 @default.
- W820384619 hasConcept C118615104 @default.
- W820384619 hasConcept C118930307 @default.
- W820384619 hasConcept C124101348 @default.
- W820384619 hasConcept C126255220 @default.
- W820384619 hasConcept C154945302 @default.
- W820384619 hasConcept C2778865114 @default.
- W820384619 hasConcept C2780757406 @default.
- W820384619 hasConcept C33923547 @default.
- W820384619 hasConcept C41008148 @default.
- W820384619 hasConcept C45374587 @default.
- W820384619 hasConcept C49937458 @default.
- W820384619 hasConcept C80444323 @default.
- W820384619 hasConceptScore W820384619C11413529 @default.
- W820384619 hasConceptScore W820384619C118615104 @default.
- W820384619 hasConceptScore W820384619C118930307 @default.
- W820384619 hasConceptScore W820384619C124101348 @default.
- W820384619 hasConceptScore W820384619C126255220 @default.
- W820384619 hasConceptScore W820384619C154945302 @default.
- W820384619 hasConceptScore W820384619C2778865114 @default.
- W820384619 hasConceptScore W820384619C2780757406 @default.
- W820384619 hasConceptScore W820384619C33923547 @default.
- W820384619 hasConceptScore W820384619C41008148 @default.
- W820384619 hasConceptScore W820384619C45374587 @default.
- W820384619 hasConceptScore W820384619C49937458 @default.
- W820384619 hasConceptScore W820384619C80444323 @default.
- W820384619 hasFunder F4320310654 @default.
- W820384619 hasLocation W8203846191 @default.
- W820384619 hasOpenAccess W820384619 @default.
- W820384619 hasPrimaryLocation W8203846191 @default.
- W820384619 hasRelatedWork W105581752 @default.
- W820384619 hasRelatedWork W1668633305 @default.
- W820384619 hasRelatedWork W2056708831 @default.
- W820384619 hasRelatedWork W2069301093 @default.
- W820384619 hasRelatedWork W2138414767 @default.
- W820384619 hasRelatedWork W2163693507 @default.
- W820384619 hasRelatedWork W2215991614 @default.
- W820384619 hasRelatedWork W2232711191 @default.
- W820384619 hasRelatedWork W2485716217 @default.
- W820384619 hasRelatedWork W3141916819 @default.
- W820384619 hasVolume "324" @default.
- W820384619 isParatext "false" @default.
- W820384619 isRetracted "false" @default.
- W820384619 magId "820384619" @default.
- W820384619 workType "article" @default.