Matches in SemOpenAlex for { <https://semopenalex.org/work/W82104423> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W82104423 abstract "This thesis concentrates upon the detection of biological transcriptional regulatory elements through computational methods. Current approaches are focused upon a representation of DNA which is essentially an abstraction to a string using a four letter alphabet. This fails to make explicit a large amount of relevant information describing how the molecule functions in its cellular environment. A major contribution of this work is the exploration of existing higher order physical and chemical properties as a representational scheme for DNA. Classification mechanisms based upon such a representation are evaluated on several tasks associated with the recognition and localisation of transcriptional control elements. The computational approaches used come from a variety of backgrounds, but the focus is primarily on machine learning methods.It is shown that promoters can be effectively predicted using a representation based on higher-order physical and chemical properties. This representation also allows more explicit insight into the biological functioning of the promoter by highlighting which regions are important for classification with respect to each model.This physico-chemical representation is also shown to be effective in clustering transcription factor binding sites for a single factor into sub-groups. These groups are used to construct weight matrices which demonstrate improved binding site classification over their original counterparts. The newly constructed composite matrices are also shown to produce fewer positive predictions but equivalent classification performance when used within a promoter prediction scheme.Motif based representations for characterising promoters are also prevalent. These have traditionally focused on a relatively small, often fixed, number of core promoter elements. While this is easily mapped into a supervised learning scenario, the more challenging task of using a variable number of motifs is considered within this work. An approach is presented to handle the scenario in which both the number of elements and their frequency of occurrence are not known a priori. This representation, handled via the multiple instance learning paradigm, is shown to be effective when combined with physico-chemical property based promoter prediction.Finally, comparative approaches also exist for the identification of regulatory elements and are often heavily reliant on a multiple sequence alignment algorithm. Such an algorithm, using simulated annealing to search for an optimal alignment ordering and based on a recent solution to the aligning alignments problem, is introduced within this work. This thesis explores the application of the new algorithm to problems involving both protein and nucleotide data." @default.
- W82104423 created "2016-06-24" @default.
- W82104423 creator A5045629825 @default.
- W82104423 date "2009-01-01" @default.
- W82104423 modified "2023-09-24" @default.
- W82104423 title "In silico detection and characterisation of biological regulatory elements" @default.
- W82104423 hasPublicationYear "2009" @default.
- W82104423 type Work @default.
- W82104423 sameAs 82104423 @default.
- W82104423 citedByCount "0" @default.
- W82104423 crossrefType "dissertation" @default.
- W82104423 hasAuthorship W82104423A5045629825 @default.
- W82104423 hasConcept C101762097 @default.
- W82104423 hasConcept C104317684 @default.
- W82104423 hasConcept C111472728 @default.
- W82104423 hasConcept C119857082 @default.
- W82104423 hasConcept C124304363 @default.
- W82104423 hasConcept C138885662 @default.
- W82104423 hasConcept C150194340 @default.
- W82104423 hasConcept C154945302 @default.
- W82104423 hasConcept C17744445 @default.
- W82104423 hasConcept C199539241 @default.
- W82104423 hasConcept C201797286 @default.
- W82104423 hasConcept C2775905019 @default.
- W82104423 hasConcept C2776359362 @default.
- W82104423 hasConcept C41008148 @default.
- W82104423 hasConcept C54355233 @default.
- W82104423 hasConcept C60644358 @default.
- W82104423 hasConcept C70721500 @default.
- W82104423 hasConcept C80444323 @default.
- W82104423 hasConcept C86803240 @default.
- W82104423 hasConcept C94625758 @default.
- W82104423 hasConceptScore W82104423C101762097 @default.
- W82104423 hasConceptScore W82104423C104317684 @default.
- W82104423 hasConceptScore W82104423C111472728 @default.
- W82104423 hasConceptScore W82104423C119857082 @default.
- W82104423 hasConceptScore W82104423C124304363 @default.
- W82104423 hasConceptScore W82104423C138885662 @default.
- W82104423 hasConceptScore W82104423C150194340 @default.
- W82104423 hasConceptScore W82104423C154945302 @default.
- W82104423 hasConceptScore W82104423C17744445 @default.
- W82104423 hasConceptScore W82104423C199539241 @default.
- W82104423 hasConceptScore W82104423C201797286 @default.
- W82104423 hasConceptScore W82104423C2775905019 @default.
- W82104423 hasConceptScore W82104423C2776359362 @default.
- W82104423 hasConceptScore W82104423C41008148 @default.
- W82104423 hasConceptScore W82104423C54355233 @default.
- W82104423 hasConceptScore W82104423C60644358 @default.
- W82104423 hasConceptScore W82104423C70721500 @default.
- W82104423 hasConceptScore W82104423C80444323 @default.
- W82104423 hasConceptScore W82104423C86803240 @default.
- W82104423 hasConceptScore W82104423C94625758 @default.
- W82104423 hasLocation W821044231 @default.
- W82104423 hasOpenAccess W82104423 @default.
- W82104423 hasPrimaryLocation W821044231 @default.
- W82104423 hasRelatedWork W117596085 @default.
- W82104423 hasRelatedWork W1587352276 @default.
- W82104423 hasRelatedWork W1883257889 @default.
- W82104423 hasRelatedWork W1986688807 @default.
- W82104423 hasRelatedWork W1991080676 @default.
- W82104423 hasRelatedWork W1993279375 @default.
- W82104423 hasRelatedWork W2083799383 @default.
- W82104423 hasRelatedWork W2092300972 @default.
- W82104423 hasRelatedWork W2101636591 @default.
- W82104423 hasRelatedWork W2102187738 @default.
- W82104423 hasRelatedWork W2104054098 @default.
- W82104423 hasRelatedWork W2113109530 @default.
- W82104423 hasRelatedWork W2156311854 @default.
- W82104423 hasRelatedWork W2170784541 @default.
- W82104423 hasRelatedWork W2253609413 @default.
- W82104423 hasRelatedWork W2529425517 @default.
- W82104423 hasRelatedWork W2760455444 @default.
- W82104423 hasRelatedWork W2939925253 @default.
- W82104423 hasRelatedWork W3112351343 @default.
- W82104423 hasRelatedWork W3159457692 @default.
- W82104423 isParatext "false" @default.
- W82104423 isRetracted "false" @default.
- W82104423 magId "82104423" @default.
- W82104423 workType "dissertation" @default.