Matches in SemOpenAlex for { <https://semopenalex.org/work/W824117140> ?p ?o ?g. }
- W824117140 endingPage "1" @default.
- W824117140 startingPage "1" @default.
- W824117140 abstract "Many studies have investigated how multiple stimuli combine to reach threshold. There are broadly speaking two ways this can occur: additive summation (AS) where inputs from the different stimuli add together in a single mechanism, or probability summation (PS) where different stimuli are detected independently by separate mechanisms. PS is traditionally modeled under high threshold theory (HTT); however, tests have shown that HTT is incorrect and that signal detection theory (SDT) is the better framework for modeling summation. Modeling the equivalent of PS under SDT is, however, relatively complicated, leading many investigators to use Monte Carlo simulations for the predictions. We derive formulas that employ numerical integration to predict the proportion correct for detecting multiple stimuli assuming PS under SDT, for the situations in which stimuli are either equal or unequal in strength. Both formulas are general purpose, calculating performance for forced-choice tasks with M alternatives, n stimuli, in Q monitored mechanisms, each subject to a non-linear transducer with exponent τ. We show how the probability (and additive) summation formulas can be used to simulate psychometric functions, which when fitted with Weibull functions make signature predictions for how thresholds and psychometric function slopes vary as a function of τ, n, and Q. We also show how one can fit the formulas directly to real psychometric functions using data from a binocular summation experiment, and show how one can obtain estimates of τ and test whether binocular summation conforms more to PS or AS. The methods described here can be readily applied using software functions newly added to the Palamedes toolbox." @default.
- W824117140 created "2016-06-24" @default.
- W824117140 creator A5040071213 @default.
- W824117140 creator A5050302108 @default.
- W824117140 creator A5075205389 @default.
- W824117140 date "2015-04-10" @default.
- W824117140 modified "2023-09-23" @default.
- W824117140 title "Modeling probability and additive summation for detection across multiple mechanisms under the assumptions of signal detection theory" @default.
- W824117140 cites W138701018 @default.
- W824117140 cites W1576968360 @default.
- W824117140 cites W1596017546 @default.
- W824117140 cites W1784695092 @default.
- W824117140 cites W1973494548 @default.
- W824117140 cites W1973940931 @default.
- W824117140 cites W1976692340 @default.
- W824117140 cites W1986214687 @default.
- W824117140 cites W1987937110 @default.
- W824117140 cites W1991221331 @default.
- W824117140 cites W1994839992 @default.
- W824117140 cites W1999263750 @default.
- W824117140 cites W2000788626 @default.
- W824117140 cites W2002409425 @default.
- W824117140 cites W2010814572 @default.
- W824117140 cites W2022253350 @default.
- W824117140 cites W2024459661 @default.
- W824117140 cites W2029061087 @default.
- W824117140 cites W2030078185 @default.
- W824117140 cites W2033927060 @default.
- W824117140 cites W2038371355 @default.
- W824117140 cites W2042236083 @default.
- W824117140 cites W2044237704 @default.
- W824117140 cites W2048123501 @default.
- W824117140 cites W2052209789 @default.
- W824117140 cites W2057111649 @default.
- W824117140 cites W2065812051 @default.
- W824117140 cites W2066658588 @default.
- W824117140 cites W2067251351 @default.
- W824117140 cites W2070147392 @default.
- W824117140 cites W2076865430 @default.
- W824117140 cites W2084882424 @default.
- W824117140 cites W2092156191 @default.
- W824117140 cites W2096557020 @default.
- W824117140 cites W2129095926 @default.
- W824117140 cites W2129863426 @default.
- W824117140 cites W2142635246 @default.
- W824117140 cites W2319610648 @default.
- W824117140 cites W2542462786 @default.
- W824117140 cites W589664387 @default.
- W824117140 doi "https://doi.org/10.1167/15.5.1" @default.
- W824117140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26067519" @default.
- W824117140 hasPublicationYear "2015" @default.
- W824117140 type Work @default.
- W824117140 sameAs 824117140 @default.
- W824117140 citedByCount "45" @default.
- W824117140 countsByYear W8241171402015 @default.
- W824117140 countsByYear W8241171402016 @default.
- W824117140 countsByYear W8241171402017 @default.
- W824117140 countsByYear W8241171402018 @default.
- W824117140 countsByYear W8241171402019 @default.
- W824117140 countsByYear W8241171402020 @default.
- W824117140 countsByYear W8241171402021 @default.
- W824117140 countsByYear W8241171402022 @default.
- W824117140 countsByYear W8241171402023 @default.
- W824117140 crossrefType "journal-article" @default.
- W824117140 hasAuthorship W824117140A5040071213 @default.
- W824117140 hasAuthorship W824117140A5050302108 @default.
- W824117140 hasAuthorship W824117140A5075205389 @default.
- W824117140 hasBestOaLocation W8241171401 @default.
- W824117140 hasConcept C105795698 @default.
- W824117140 hasConcept C121332964 @default.
- W824117140 hasConcept C121864883 @default.
- W824117140 hasConcept C137270730 @default.
- W824117140 hasConcept C14036430 @default.
- W824117140 hasConcept C15123163 @default.
- W824117140 hasConcept C169760540 @default.
- W824117140 hasConcept C173291955 @default.
- W824117140 hasConcept C19499675 @default.
- W824117140 hasConcept C199360897 @default.
- W824117140 hasConcept C24998067 @default.
- W824117140 hasConcept C26760741 @default.
- W824117140 hasConcept C27667172 @default.
- W824117140 hasConcept C2779843651 @default.
- W824117140 hasConcept C33923547 @default.
- W824117140 hasConcept C41008148 @default.
- W824117140 hasConcept C63405582 @default.
- W824117140 hasConcept C76155785 @default.
- W824117140 hasConcept C78458016 @default.
- W824117140 hasConcept C86803240 @default.
- W824117140 hasConcept C94915269 @default.
- W824117140 hasConceptScore W824117140C105795698 @default.
- W824117140 hasConceptScore W824117140C121332964 @default.
- W824117140 hasConceptScore W824117140C121864883 @default.
- W824117140 hasConceptScore W824117140C137270730 @default.
- W824117140 hasConceptScore W824117140C14036430 @default.
- W824117140 hasConceptScore W824117140C15123163 @default.
- W824117140 hasConceptScore W824117140C169760540 @default.
- W824117140 hasConceptScore W824117140C173291955 @default.
- W824117140 hasConceptScore W824117140C19499675 @default.