Matches in SemOpenAlex for { <https://semopenalex.org/work/W824308905> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W824308905 abstract "The great challenge in quality control is to devise computationally efficient algorithms to detect and diagnose process defects. Univariate statistical process control charts are currently used as an integral part in statistical quality control of engineering processes. Unfortunately, most data are inherently multivariate and need to be modelled accordingly. Major limitations such as higher data complexity and difficulty in interpretation have limited the application of multivariate techniques in process control. Motivated by the recent advances in dimensionality reduction algorithms and in order to effectively monitor highly correlated data, we introduce in this thesis new multivariate statistical process control charts based on the eigen-analysis of kernel matrices. The core idea behind our proposed techniques is to develop a theoretically rigorous methodology for multivariate statistical process control. We use scalp-recorded electroencephalograms (EEGs) as our real-world multivariate data source to demonstrate the effectiveness of our proposed algorithms. EEGs consist of vast amounts of complex data that require a trained professional to perform a proper analysis. Moreover, the currently used methodologies for analyzing EEGs are very labor-intensive. To circumvent these limitations, we show through extensive experimentation that our proposed approaches can be applied successfully in the analysis of EEGs by automating the detection of events. The task of classifying the events would still, however, be left to a professional clinician. For ease of visualization and analysis of EEGs, we designed a user-friendly Graphical User Interface (GUI) to test the performance of the proposed kernel dimension reduction techniques, and to also perform a comparison with the most prevalent methods used in multivariate process control" @default.
- W824308905 created "2016-06-24" @default.
- W824308905 creator A5072407770 @default.
- W824308905 date "2007-01-01" @default.
- W824308905 modified "2023-09-27" @default.
- W824308905 title "Kernel dimension reduction approaches for multivariate process control" @default.
- W824308905 hasPublicationYear "2007" @default.
- W824308905 type Work @default.
- W824308905 sameAs 824308905 @default.
- W824308905 citedByCount "0" @default.
- W824308905 crossrefType "dissertation" @default.
- W824308905 hasAuthorship W824308905A5072407770 @default.
- W824308905 hasConcept C111919701 @default.
- W824308905 hasConcept C113644684 @default.
- W824308905 hasConcept C119857082 @default.
- W824308905 hasConcept C124101348 @default.
- W824308905 hasConcept C154945302 @default.
- W824308905 hasConcept C161584116 @default.
- W824308905 hasConcept C199163554 @default.
- W824308905 hasConcept C41008148 @default.
- W824308905 hasConcept C70518039 @default.
- W824308905 hasConcept C739882 @default.
- W824308905 hasConcept C98045186 @default.
- W824308905 hasConceptScore W824308905C111919701 @default.
- W824308905 hasConceptScore W824308905C113644684 @default.
- W824308905 hasConceptScore W824308905C119857082 @default.
- W824308905 hasConceptScore W824308905C124101348 @default.
- W824308905 hasConceptScore W824308905C154945302 @default.
- W824308905 hasConceptScore W824308905C161584116 @default.
- W824308905 hasConceptScore W824308905C199163554 @default.
- W824308905 hasConceptScore W824308905C41008148 @default.
- W824308905 hasConceptScore W824308905C70518039 @default.
- W824308905 hasConceptScore W824308905C739882 @default.
- W824308905 hasConceptScore W824308905C98045186 @default.
- W824308905 hasLocation W8243089051 @default.
- W824308905 hasOpenAccess W824308905 @default.
- W824308905 hasPrimaryLocation W8243089051 @default.
- W824308905 hasRelatedWork W1520954898 @default.
- W824308905 hasRelatedWork W1971625262 @default.
- W824308905 hasRelatedWork W2105604688 @default.
- W824308905 hasRelatedWork W2151207939 @default.
- W824308905 hasRelatedWork W2208081675 @default.
- W824308905 hasRelatedWork W2305497474 @default.
- W824308905 hasRelatedWork W2312160147 @default.
- W824308905 hasRelatedWork W2321826012 @default.
- W824308905 hasRelatedWork W2324063573 @default.
- W824308905 hasRelatedWork W2757938417 @default.
- W824308905 hasRelatedWork W2888009909 @default.
- W824308905 hasRelatedWork W2897131745 @default.
- W824308905 hasRelatedWork W2939753113 @default.
- W824308905 hasRelatedWork W2960107945 @default.
- W824308905 hasRelatedWork W3030399597 @default.
- W824308905 hasRelatedWork W3119526997 @default.
- W824308905 hasRelatedWork W3134989920 @default.
- W824308905 hasRelatedWork W3167553563 @default.
- W824308905 hasRelatedWork W37211434 @default.
- W824308905 hasRelatedWork W2099210564 @default.
- W824308905 isParatext "false" @default.
- W824308905 isRetracted "false" @default.
- W824308905 magId "824308905" @default.
- W824308905 workType "dissertation" @default.