Matches in SemOpenAlex for { <https://semopenalex.org/work/W824577097> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W824577097 abstract "The research uses neural nets as a tool in the investigation of busienss failure prediction and business performance monitoring. The novelty lies in the introduction of models including qualitative factors as well as financial ratios. In addition, an analysis of data gathered from a new survey is offered. To achieve its objectives the research begins by exploring the AI options and then reviews current neural net technology with a view to identifying appropriate technology for the implementation of a classifier for the two areas of failure prediction and performance monitoring.After consideration of the strengths and weaknesses of the options, a multi-layer perceptron, back propagation net is adopted as being unsuitable for this application.In order to verify the validity of the bespoke neural net software it was necessary to employ a two stage strategy. The first step was to confirm that the net, as implemented, retained the expected property of being able to solve problems that were not linearly separable. This was achieved by demonstrating its ability to solve the straightforward XOR problem.To be confident of the net performance it was deemed necessary to replicate the experiments of previous research which used only purely financial inputs to the net. The results confirmed the validity of the new network implementation. Using the intital results as a control, experiments were undertaken to ascertain the effect of reducing the training sample size and to identify minimum sample sizes commensurate with maintaining the effectiveness.The work then further contributes to this research by using traditional stastical methods to provide an empirically derived equation for calculating the minimum number of training patterns required for corporate failure prediction in the context of the experimental sets of variables. The resulting failure prediction model was then used to test for symptoms of bankruptcy in firms currently trading.The thesis then leads on to describing a technique developed in this study for pre-processing qualitative questionnaires, prior to input into a neural model as well as providing a method for predicting values not supplied in incomplete survey responses.A contribution is also made to the area of company performance analysis by using neural techniques and discriminant analysis to show that relationships do exist between certain company variables and business performance, as well as highlighting which of these variables are the most important if an appropriate corporate condition monitoring strategy is to be developed.Lastly, the corporate performance neural network model is enhanced by facilitating the categorisation of a firm into one of several performance bands." @default.
- W824577097 created "2016-06-24" @default.
- W824577097 creator A5084634929 @default.
- W824577097 date "1997-01-01" @default.
- W824577097 modified "2023-09-23" @default.
- W824577097 title "Neural networks in business condition monitoring" @default.
- W824577097 hasPublicationYear "1997" @default.
- W824577097 type Work @default.
- W824577097 sameAs 824577097 @default.
- W824577097 citedByCount "0" @default.
- W824577097 crossrefType "dissertation" @default.
- W824577097 hasAuthorship W824577097A5084634929 @default.
- W824577097 hasConcept C105795698 @default.
- W824577097 hasConcept C111472728 @default.
- W824577097 hasConcept C119857082 @default.
- W824577097 hasConcept C124101348 @default.
- W824577097 hasConcept C127413603 @default.
- W824577097 hasConcept C13736549 @default.
- W824577097 hasConcept C138885662 @default.
- W824577097 hasConcept C154945302 @default.
- W824577097 hasConcept C17744445 @default.
- W824577097 hasConcept C185592680 @default.
- W824577097 hasConcept C198531522 @default.
- W824577097 hasConcept C199360897 @default.
- W824577097 hasConcept C199539241 @default.
- W824577097 hasConcept C27206212 @default.
- W824577097 hasConcept C2777904410 @default.
- W824577097 hasConcept C2778738651 @default.
- W824577097 hasConcept C2781162219 @default.
- W824577097 hasConcept C33923547 @default.
- W824577097 hasConcept C41008148 @default.
- W824577097 hasConcept C43617362 @default.
- W824577097 hasConcept C44210515 @default.
- W824577097 hasConcept C50644808 @default.
- W824577097 hasConcept C60908668 @default.
- W824577097 hasConcept C63882131 @default.
- W824577097 hasConcept C95623464 @default.
- W824577097 hasConceptScore W824577097C105795698 @default.
- W824577097 hasConceptScore W824577097C111472728 @default.
- W824577097 hasConceptScore W824577097C119857082 @default.
- W824577097 hasConceptScore W824577097C124101348 @default.
- W824577097 hasConceptScore W824577097C127413603 @default.
- W824577097 hasConceptScore W824577097C13736549 @default.
- W824577097 hasConceptScore W824577097C138885662 @default.
- W824577097 hasConceptScore W824577097C154945302 @default.
- W824577097 hasConceptScore W824577097C17744445 @default.
- W824577097 hasConceptScore W824577097C185592680 @default.
- W824577097 hasConceptScore W824577097C198531522 @default.
- W824577097 hasConceptScore W824577097C199360897 @default.
- W824577097 hasConceptScore W824577097C199539241 @default.
- W824577097 hasConceptScore W824577097C27206212 @default.
- W824577097 hasConceptScore W824577097C2777904410 @default.
- W824577097 hasConceptScore W824577097C2778738651 @default.
- W824577097 hasConceptScore W824577097C2781162219 @default.
- W824577097 hasConceptScore W824577097C33923547 @default.
- W824577097 hasConceptScore W824577097C41008148 @default.
- W824577097 hasConceptScore W824577097C43617362 @default.
- W824577097 hasConceptScore W824577097C44210515 @default.
- W824577097 hasConceptScore W824577097C50644808 @default.
- W824577097 hasConceptScore W824577097C60908668 @default.
- W824577097 hasConceptScore W824577097C63882131 @default.
- W824577097 hasConceptScore W824577097C95623464 @default.
- W824577097 hasLocation W8245770971 @default.
- W824577097 hasOpenAccess W824577097 @default.
- W824577097 hasPrimaryLocation W8245770971 @default.
- W824577097 hasRelatedWork W142644365 @default.
- W824577097 hasRelatedWork W2013702405 @default.
- W824577097 hasRelatedWork W2040042058 @default.
- W824577097 hasRelatedWork W2062720108 @default.
- W824577097 hasRelatedWork W2089758261 @default.
- W824577097 hasRelatedWork W2097283422 @default.
- W824577097 hasRelatedWork W2103716941 @default.
- W824577097 hasRelatedWork W2123604854 @default.
- W824577097 hasRelatedWork W2131891947 @default.
- W824577097 hasRelatedWork W2160258199 @default.
- W824577097 hasRelatedWork W2167960479 @default.
- W824577097 hasRelatedWork W2184233506 @default.
- W824577097 hasRelatedWork W2521334225 @default.
- W824577097 hasRelatedWork W2573553979 @default.
- W824577097 hasRelatedWork W2725153349 @default.
- W824577097 hasRelatedWork W2964300152 @default.
- W824577097 hasRelatedWork W2999614963 @default.
- W824577097 hasRelatedWork W3098018182 @default.
- W824577097 hasRelatedWork W3110394825 @default.
- W824577097 hasRelatedWork W2403591770 @default.
- W824577097 isParatext "false" @default.
- W824577097 isRetracted "false" @default.
- W824577097 magId "824577097" @default.
- W824577097 workType "dissertation" @default.