Matches in SemOpenAlex for { <https://semopenalex.org/work/W82498724> ?p ?o ?g. }
- W82498724 abstract "ObjectivesThe feasibility study shall answer the following questions: Are there economical and ecological advantages of on-farm dry digestion biogas plants? How the construction and operation parameters of a dry digestion biogas plant influence environment, profit, and sustainability of on-farm biogas production? The aim of the feasibility study is to provide facts and figures for decision makers in Finland to support the development of the economically and environmentally most promising biogas technology on-farm. The results may encourage on-farm biogas plant manufacturers to develop and market dry anaerobic digestion technology as a complementary technology. This technology may be a competitive alternative for farms using a dry manure chain or even for stockless farms. ResultsUp to now farm scale dry digestion technology does not offer competitive advantages in biogas production compared to slurry based technology as far as only energy production is concerned. However, the results give an over-view of existing technical solutions of farm-scale dry digestion plants. The results also show that the ideal technical solution is not invented yet. This may be a challenge for farmers and entrepreneurs interested in planning and developing future dry digestion biogas plants on-farm. Development of new dry digestion prototype plants requires appropriate compensation for environmental benefits like closed energy and nutrient circles to improve the economy of biogas production. The prototype in Jarna meets the objectives of the project since beside energy a new compost product from the solid fraction was generated. On the other hand the two-phase process consumes much energy and the investment costs are high (>2000 € m-3 reactor volume).Dry digestion on-farm offers the following advantages: Good process stability and reliability, no problems like foam or sedimentation, cheap modules for batch reactors, less reactor capacity, reduced transport costs due to reduced mass transfer in respect of the produced biogas quantity per mass unit, compost of solid digestion residues suitable as fertiliser also outside the farm gate, use of on-farm available technology for filling and discharging the reactor, less process energy for heating because of reduced reactor size, no process energy for stirring, reduced odour emissions, reduced nutrient run off during storage and distribution of residues because there is no liquid mass transfer, suitable for farms using deep litter systems.These advantages are compensated by following constraints: Up to 50% of digestion residues are needed as inoculation material (cattle manure does not need inoculation) requiring more reactor capacity and mixing facilities. Retention time of dry digestion is up to three times longer compared to wet digestion requiring more reactor capacity and more process energy, filling and discharging batch reactors is time and energy consuming. We conclude that only farm specific conditions may be in favour for dry digestion technology.Generally, four factors decide about the economy of biogas production on-farm: Income from waste disposal services, compensation for reduction of greenhouse gas emission, compensation for energy production and - most important for sustainable agriculture - nutrient recycling benefits.Evaluation of the resultsWe did not find any refereed scientific paper that includes a documentation of an on-farm dry digestion biogas plant. It seems that we tried first. We also could not find any results about the biogas potential of oat husks, so we may have found these results first.Farm scale production of anaerobically treated solid manure for composting is new. Dry fermentation biogas plants offer the possibility to design solid manure compost by variation of fermentation process parameters. From different scientific publication databases we found about 10 000 references concerning biogas research during the past 10 years. Less than ten are dealing with biogas reactors for non-liquid substrates on-farm. Recent research mainly concentrates on basic research, biogas process research for communal waste, large-scale biogas plants, and research on laboratory level. This mirrors the fact, that production of research papers is rather financed than product development on site. Our conclusion is that it seems worldwide to be very difficult or even impossible to find financial support for on site research, especially for on-farm prototype biogas reactors. We suppose the following reasons for this fact: biogas plant research requires proficiency in many different scientific disciplines, lack of co-operation between engineering and life sciences, high development costs to transfer basic research results into practical technical solutions, low interest of researchers because on site and on-farm research enjoys low appreciation in terms of scientific credits, portability of farm specific design and process solutions is difficult. Our conclusion is that on site and on-farm research has to be supported by funding agencies if integration of biogas and bio energy into the farm organism is considered as an important target within the agricultural policy framework.Future research on both dry fermentation technique and biogas yield of solid organic residues may close present knowledge gaps. Prototype research may offer competitive alternatives to wet fermentation for farms using a solid manure chain and/or energy crops for biogas production.To encourage farmers and entrepreneurs to foster the development of dry fermentation technology support in terms of education and advisory services is also necessary." @default.
- W82498724 created "2016-06-24" @default.
- W82498724 creator A5046001794 @default.
- W82498724 creator A5077583153 @default.
- W82498724 creator A5086442956 @default.
- W82498724 date "2006-05-01" @default.
- W82498724 modified "2023-09-24" @default.
- W82498724 title "Dry anaerobic digestion of organic residues on-farm - a feasibility study" @default.
- W82498724 cites W14403305 @default.
- W82498724 cites W1481204125 @default.
- W82498724 cites W1553331556 @default.
- W82498724 cites W1562871113 @default.
- W82498724 cites W1594095768 @default.
- W82498724 cites W1726902828 @default.
- W82498724 cites W1922582392 @default.
- W82498724 cites W1966311158 @default.
- W82498724 cites W1976178399 @default.
- W82498724 cites W1985922289 @default.
- W82498724 cites W1993171274 @default.
- W82498724 cites W2040765268 @default.
- W82498724 cites W2060328560 @default.
- W82498724 cites W2103284081 @default.
- W82498724 cites W2126231118 @default.
- W82498724 cites W2134236819 @default.
- W82498724 cites W2148976336 @default.
- W82498724 cites W2170837141 @default.
- W82498724 cites W2179363524 @default.
- W82498724 cites W2183086889 @default.
- W82498724 cites W2247267582 @default.
- W82498724 cites W2259278066 @default.
- W82498724 cites W2407433798 @default.
- W82498724 cites W2771639984 @default.
- W82498724 cites W3044174346 @default.
- W82498724 cites W3113393444 @default.
- W82498724 cites W588603948 @default.
- W82498724 cites W2163316440 @default.
- W82498724 cites W2597701002 @default.
- W82498724 cites W2744259960 @default.
- W82498724 cites W3035039341 @default.
- W82498724 hasPublicationYear "2006" @default.
- W82498724 type Work @default.
- W82498724 sameAs 82498724 @default.
- W82498724 citedByCount "15" @default.
- W82498724 countsByYear W824987242012 @default.
- W82498724 countsByYear W824987242013 @default.
- W82498724 countsByYear W824987242014 @default.
- W82498724 countsByYear W824987242015 @default.
- W82498724 crossrefType "journal-article" @default.
- W82498724 hasAuthorship W82498724A5046001794 @default.
- W82498724 hasAuthorship W82498724A5077583153 @default.
- W82498724 hasAuthorship W82498724A5086442956 @default.
- W82498724 hasConcept C127413603 @default.
- W82498724 hasConcept C156380964 @default.
- W82498724 hasConcept C178790620 @default.
- W82498724 hasConcept C185592680 @default.
- W82498724 hasConcept C38304854 @default.
- W82498724 hasConcept C39432304 @default.
- W82498724 hasConcept C499616599 @default.
- W82498724 hasConcept C516920438 @default.
- W82498724 hasConcept C53991642 @default.
- W82498724 hasConcept C548081761 @default.
- W82498724 hasConcept C6557445 @default.
- W82498724 hasConcept C75212476 @default.
- W82498724 hasConcept C86803240 @default.
- W82498724 hasConcept C87717796 @default.
- W82498724 hasConcept C88463610 @default.
- W82498724 hasConcept C94293008 @default.
- W82498724 hasConceptScore W82498724C127413603 @default.
- W82498724 hasConceptScore W82498724C156380964 @default.
- W82498724 hasConceptScore W82498724C178790620 @default.
- W82498724 hasConceptScore W82498724C185592680 @default.
- W82498724 hasConceptScore W82498724C38304854 @default.
- W82498724 hasConceptScore W82498724C39432304 @default.
- W82498724 hasConceptScore W82498724C499616599 @default.
- W82498724 hasConceptScore W82498724C516920438 @default.
- W82498724 hasConceptScore W82498724C53991642 @default.
- W82498724 hasConceptScore W82498724C548081761 @default.
- W82498724 hasConceptScore W82498724C6557445 @default.
- W82498724 hasConceptScore W82498724C75212476 @default.
- W82498724 hasConceptScore W82498724C86803240 @default.
- W82498724 hasConceptScore W82498724C87717796 @default.
- W82498724 hasConceptScore W82498724C88463610 @default.
- W82498724 hasConceptScore W82498724C94293008 @default.
- W82498724 hasLocation W824987241 @default.
- W82498724 hasOpenAccess W82498724 @default.
- W82498724 hasPrimaryLocation W824987241 @default.
- W82498724 hasRelatedWork W1510225396 @default.
- W82498724 hasRelatedWork W1856219842 @default.
- W82498724 hasRelatedWork W1975879262 @default.
- W82498724 hasRelatedWork W1996007866 @default.
- W82498724 hasRelatedWork W2001374261 @default.
- W82498724 hasRelatedWork W2019950773 @default.
- W82498724 hasRelatedWork W2042658140 @default.
- W82498724 hasRelatedWork W2057573532 @default.
- W82498724 hasRelatedWork W2062698936 @default.
- W82498724 hasRelatedWork W2065081293 @default.
- W82498724 hasRelatedWork W2065475159 @default.
- W82498724 hasRelatedWork W2089848749 @default.
- W82498724 hasRelatedWork W2093868199 @default.
- W82498724 hasRelatedWork W2096318453 @default.