Matches in SemOpenAlex for { <https://semopenalex.org/work/W827754192> ?p ?o ?g. }
- W827754192 endingPage "1172" @default.
- W827754192 startingPage "1161" @default.
- W827754192 abstract "Influential data are those that have a disproportionate impact on model performance, parameters and/or predictions. This paper evaluates two classes of diagnostics that identify influential data for hydrological model calibration: (1) numerical “case-deletion” diagnostics, which directly measure the influence of each data point on the calibrated model; and (2) analytical diagnostics based on Cook’s distance, which combine information on the model residuals with a measure of the distance of each input point from the centre of the range of the input data (i.e., the leverage). Case-deletion methods rank influence by changes in the model parameters (measured through the Mahalanobis distance), performance (using objective function displacement) and predictions (e.g. mean and maximum streamflow). For the analytical methods, both linear and nonlinear estimates of leverage are used to calculate Cook’s distance, which is used to rank influential data. We apply these diagnostics to three case studies and show that a single point could change mean/maximum streamflow predictions by 7%/9% for a rating curve model, and 13%/25%, for a hydrological model (GR4J) in an ephemeral catchment. In contrast, the influence was far less for GR4J in a humid catchment (0.2%/2.3%). Assuming the data are of high quality this indicates deficiencies in the ability of the GR4J model structure to reproduce the flow regime in the ephemeral catchment. The linear Cook’s distance-based metric produced reasonably similar rankings to the case-deletion metrics at a fraction of the computational cost (300–1000 times faster), but with less flexibility to rank influence using specific aspects of model behaviour. The nonlinear distance produced rankings that were virtually the same as the case-deletion metrics for all case studies – this highlights the importance of its use for nonlinear hydrological models. Visual assessment was not a reliable method of influence analysis as there was no direct relationship between the most influential data and the highest observed streamflows. The findings establish the feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration." @default.
- W827754192 created "2016-06-24" @default.
- W827754192 creator A5049897783 @default.
- W827754192 creator A5057168270 @default.
- W827754192 creator A5066145908 @default.
- W827754192 date "2015-08-01" @default.
- W827754192 modified "2023-10-01" @default.
- W827754192 title "Influential point detection diagnostics in the context of hydrological model calibration" @default.
- W827754192 cites W1481511658 @default.
- W827754192 cites W1505007762 @default.
- W827754192 cites W1652520942 @default.
- W827754192 cites W1738936625 @default.
- W827754192 cites W1868445823 @default.
- W827754192 cites W1982125139 @default.
- W827754192 cites W1990779154 @default.
- W827754192 cites W1995531085 @default.
- W827754192 cites W2010624461 @default.
- W827754192 cites W2015054807 @default.
- W827754192 cites W2018343343 @default.
- W827754192 cites W2018791792 @default.
- W827754192 cites W2037417698 @default.
- W827754192 cites W2037460094 @default.
- W827754192 cites W2038806690 @default.
- W827754192 cites W2043805260 @default.
- W827754192 cites W2044836584 @default.
- W827754192 cites W2058227773 @default.
- W827754192 cites W2061635004 @default.
- W827754192 cites W2065265256 @default.
- W827754192 cites W2078079110 @default.
- W827754192 cites W2079589740 @default.
- W827754192 cites W2079628820 @default.
- W827754192 cites W2082919174 @default.
- W827754192 cites W2086869832 @default.
- W827754192 cites W2088490526 @default.
- W827754192 cites W2118924197 @default.
- W827754192 cites W2121124177 @default.
- W827754192 cites W2122315938 @default.
- W827754192 cites W2123677000 @default.
- W827754192 cites W2133837084 @default.
- W827754192 cites W2163058405 @default.
- W827754192 cites W2170396766 @default.
- W827754192 cites W2331644305 @default.
- W827754192 cites W2787894218 @default.
- W827754192 doi "https://doi.org/10.1016/j.jhydrol.2015.05.047" @default.
- W827754192 hasPublicationYear "2015" @default.
- W827754192 type Work @default.
- W827754192 sameAs 827754192 @default.
- W827754192 citedByCount "14" @default.
- W827754192 countsByYear W8277541922017 @default.
- W827754192 countsByYear W8277541922018 @default.
- W827754192 countsByYear W8277541922019 @default.
- W827754192 countsByYear W8277541922020 @default.
- W827754192 countsByYear W8277541922021 @default.
- W827754192 countsByYear W8277541922022 @default.
- W827754192 countsByYear W8277541922023 @default.
- W827754192 crossrefType "journal-article" @default.
- W827754192 hasAuthorship W827754192A5049897783 @default.
- W827754192 hasAuthorship W827754192A5057168270 @default.
- W827754192 hasAuthorship W827754192A5066145908 @default.
- W827754192 hasConcept C105795698 @default.
- W827754192 hasConcept C121332964 @default.
- W827754192 hasConcept C126645576 @default.
- W827754192 hasConcept C127313418 @default.
- W827754192 hasConcept C149782125 @default.
- W827754192 hasConcept C151730666 @default.
- W827754192 hasConcept C153083717 @default.
- W827754192 hasConcept C158622935 @default.
- W827754192 hasConcept C159985019 @default.
- W827754192 hasConcept C162324750 @default.
- W827754192 hasConcept C165838908 @default.
- W827754192 hasConcept C166957645 @default.
- W827754192 hasConcept C176217482 @default.
- W827754192 hasConcept C1921717 @default.
- W827754192 hasConcept C192562407 @default.
- W827754192 hasConcept C204323151 @default.
- W827754192 hasConcept C205649164 @default.
- W827754192 hasConcept C21547014 @default.
- W827754192 hasConcept C2779343474 @default.
- W827754192 hasConcept C2816523 @default.
- W827754192 hasConcept C33923547 @default.
- W827754192 hasConcept C41008148 @default.
- W827754192 hasConcept C53739315 @default.
- W827754192 hasConcept C58640448 @default.
- W827754192 hasConcept C62520636 @default.
- W827754192 hasConcept C87027312 @default.
- W827754192 hasConceptScore W827754192C105795698 @default.
- W827754192 hasConceptScore W827754192C121332964 @default.
- W827754192 hasConceptScore W827754192C126645576 @default.
- W827754192 hasConceptScore W827754192C127313418 @default.
- W827754192 hasConceptScore W827754192C149782125 @default.
- W827754192 hasConceptScore W827754192C151730666 @default.
- W827754192 hasConceptScore W827754192C153083717 @default.
- W827754192 hasConceptScore W827754192C158622935 @default.
- W827754192 hasConceptScore W827754192C159985019 @default.
- W827754192 hasConceptScore W827754192C162324750 @default.
- W827754192 hasConceptScore W827754192C165838908 @default.
- W827754192 hasConceptScore W827754192C166957645 @default.
- W827754192 hasConceptScore W827754192C176217482 @default.