Matches in SemOpenAlex for { <https://semopenalex.org/work/W828667094> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W828667094 abstract "Digitalized music production exploded in the past decade. Huge amount of data drives the development of effective and efficient methods for automatic music analysis and retrieval. This thesis focuses on performing semantic analysis of music, in particular mood and genre classification, with low level and mid level features since the mood and genre are among the most natural semantic concepts expressed by music perceivable by audiences. In order to delve semantics from low level features, feature modeling techniques like K-means and GMM based BoW and Gaussian super vector have to be applied. In this big data era, the time and accuracy efficiency becomes a main issue in the low level feature modeling. Our first contribution thus focuses on accelerating k-means, GMM and UBM-MAP frameworks, involving the acceleration on single machine and on cluster of workstations. To achieve the maximum speed on single machine, we show that dictionary learning procedures can elegantly be rewritten in matrix format that can be accelerated efficiently by high performance parallel computational infrastructures like multi-core CPU, GPU. In particular with GPU support and careful tuning, we have achieved two magnitudes speed up compared with single thread implementation. Regarding data set which cannot fit into the memory of individual computer, we show that the k-means and GMM training procedures can be divided into map-reduce pattern which can be executed on Hadoop and Spark cluster. Our matrix format version executes 5 to 10 times faster on Hadoop and Spark clusters than the state-of-the-art libraries. Beside signal level features, mid-level features like harmony of music, the most natural semantic given by the composer, are also important since it contains higher level of abstraction of meaning beyond physical oscillation. Our second contribution thus focuses on recovering note information from music signal with musical knowledge. This contribution relies on two levels of musical knowledge: instrument note sound and note co-occurrence/transition statistics. In the instrument note sound level, a note dictionary is firstly built i from Logic Pro 9. With the musical dictionary in hand, we propose a positive constraint matching pursuit (PCMP) algorithm to perform the decomposition. In the inter-note level, we propose a two stage sparse decomposition approach integrated with note statistical information. In frame level decomposition stage, note co-occurrence probabilities are embedded to guide atom selection and to build sparse multiple candidate graph providing backup choices for later selections. In the global optimal path searching stage, note transition probabilities are incorporated. Experiments on multiple data sets show that our proposed approaches outperform the state-of-the-art in terms of accuracy and recall for note recovery and music mood/genre classification." @default.
- W828667094 created "2016-06-24" @default.
- W828667094 creator A5091343024 @default.
- W828667094 date "2014-12-15" @default.
- W828667094 modified "2023-09-23" @default.
- W828667094 title "Contributions to music semantic analysis and its acceleration techniques" @default.
- W828667094 hasPublicationYear "2014" @default.
- W828667094 type Work @default.
- W828667094 sameAs 828667094 @default.
- W828667094 citedByCount "0" @default.
- W828667094 crossrefType "dissertation" @default.
- W828667094 hasAuthorship W828667094A5091343024 @default.
- W828667094 hasConcept C138101251 @default.
- W828667094 hasConcept C154945302 @default.
- W828667094 hasConcept C173608175 @default.
- W828667094 hasConcept C199360897 @default.
- W828667094 hasConcept C2781215313 @default.
- W828667094 hasConcept C41008148 @default.
- W828667094 hasConceptScore W828667094C138101251 @default.
- W828667094 hasConceptScore W828667094C154945302 @default.
- W828667094 hasConceptScore W828667094C173608175 @default.
- W828667094 hasConceptScore W828667094C199360897 @default.
- W828667094 hasConceptScore W828667094C2781215313 @default.
- W828667094 hasConceptScore W828667094C41008148 @default.
- W828667094 hasLocation W8286670941 @default.
- W828667094 hasOpenAccess W828667094 @default.
- W828667094 hasPrimaryLocation W8286670941 @default.
- W828667094 hasRelatedWork W1519384422 @default.
- W828667094 hasRelatedWork W1964439427 @default.
- W828667094 hasRelatedWork W1994425695 @default.
- W828667094 hasRelatedWork W2014739784 @default.
- W828667094 hasRelatedWork W2077256322 @default.
- W828667094 hasRelatedWork W2090365098 @default.
- W828667094 hasRelatedWork W2101419145 @default.
- W828667094 hasRelatedWork W2123081025 @default.
- W828667094 hasRelatedWork W2164877274 @default.
- W828667094 hasRelatedWork W2168476997 @default.
- W828667094 hasRelatedWork W2408576542 @default.
- W828667094 hasRelatedWork W2519286471 @default.
- W828667094 hasRelatedWork W2573825269 @default.
- W828667094 hasRelatedWork W2784180354 @default.
- W828667094 hasRelatedWork W307124397 @default.
- W828667094 hasRelatedWork W3098670224 @default.
- W828667094 hasRelatedWork W3130204614 @default.
- W828667094 hasRelatedWork W3158866072 @default.
- W828667094 hasRelatedWork W3185345564 @default.
- W828667094 hasRelatedWork W2161315604 @default.
- W828667094 isParatext "false" @default.
- W828667094 isRetracted "false" @default.
- W828667094 magId "828667094" @default.
- W828667094 workType "dissertation" @default.