Matches in SemOpenAlex for { <https://semopenalex.org/work/W82933248> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W82933248 abstract "Part I: We consider the numerical solution of the Navier-Stokes equations governing the unsteady flow of a viscous incompressible fluid. The analysis of numerical approximations to smooth nonlinear problems reduces to the examination of related linearized problems. The well posedness of the linear Navier-Stokes equations and the stability of finite difference approximations are studied by making energy estimates for the initial boundary value problems. Flows with open boundaries (i.e., inflow and outflow) and with solid walls are considered. We analyse boundary conditions of several types involving the velocity components or a combination of the velocity components and the pressure. The properties of these different types of boundary conditions are compared with emphasis on the suppression of undesirable numerical boundary layers for high Reynolds number calculations. The formulation of the Navier-Stokes equations which uses an elliptic equation for the pressure in lieu of the divergence equation for the velocity is shown to be equivalent to the usual formulation if the boundary conditions are treated correctly. The stability of numerical methods which use this formulation is demonstrated. Part II: We consider the numerical solution of the stream function vorticity formulation of the two dimensional incompressible Navier-Stokes equations for unsteady flows on a domain with rigid walls. The no-slip boundary conditions on the velocity components at the rigid walls are prescribed. In the stream function vorticity formulation these become two boundary conditions on the stream function and there is no explicit boundary condition on the vorticity. The accuracy of the numerical approximations to the stream function and the vorticity is investigated.The common approach in calculations is to employ second order accurate finite difference approximations for all the space derivatives and the boundary conditions together with a time marching procedure involving iteration at each time step to satisfy the boundary conditions. With such schemes the vorticity may be only first order accurate. Higher order approximations to the no-slip boundary conditions have frequently been used to overcome this problem. A one dimensional initial boundary value problem containing the salient features is proposed and analysed. With the use of this model, the behaviour observed in calculations is explained." @default.
- W82933248 created "2016-06-24" @default.
- W82933248 creator A5084530547 @default.
- W82933248 date "1986-01-01" @default.
- W82933248 modified "2023-09-27" @default.
- W82933248 title "On Numerical Boundary Conditions for the Navier-Stokes Equations" @default.
- W82933248 doi "https://doi.org/10.7907/3qde-cb55." @default.
- W82933248 hasPublicationYear "1986" @default.
- W82933248 type Work @default.
- W82933248 sameAs 82933248 @default.
- W82933248 citedByCount "4" @default.
- W82933248 crossrefType "dissertation" @default.
- W82933248 hasAuthorship W82933248A5084530547 @default.
- W82933248 hasConcept C108257041 @default.
- W82933248 hasConcept C121332964 @default.
- W82933248 hasConcept C134306372 @default.
- W82933248 hasConcept C140820882 @default.
- W82933248 hasConcept C158622935 @default.
- W82933248 hasConcept C182310444 @default.
- W82933248 hasConcept C18932819 @default.
- W82933248 hasConcept C200114574 @default.
- W82933248 hasConcept C2781278361 @default.
- W82933248 hasConcept C33923547 @default.
- W82933248 hasConcept C42045870 @default.
- W82933248 hasConcept C45178976 @default.
- W82933248 hasConcept C57879066 @default.
- W82933248 hasConcept C62520636 @default.
- W82933248 hasConcept C84655787 @default.
- W82933248 hasConceptScore W82933248C108257041 @default.
- W82933248 hasConceptScore W82933248C121332964 @default.
- W82933248 hasConceptScore W82933248C134306372 @default.
- W82933248 hasConceptScore W82933248C140820882 @default.
- W82933248 hasConceptScore W82933248C158622935 @default.
- W82933248 hasConceptScore W82933248C182310444 @default.
- W82933248 hasConceptScore W82933248C18932819 @default.
- W82933248 hasConceptScore W82933248C200114574 @default.
- W82933248 hasConceptScore W82933248C2781278361 @default.
- W82933248 hasConceptScore W82933248C33923547 @default.
- W82933248 hasConceptScore W82933248C42045870 @default.
- W82933248 hasConceptScore W82933248C45178976 @default.
- W82933248 hasConceptScore W82933248C57879066 @default.
- W82933248 hasConceptScore W82933248C62520636 @default.
- W82933248 hasConceptScore W82933248C84655787 @default.
- W82933248 hasLocation W829332481 @default.
- W82933248 hasOpenAccess W82933248 @default.
- W82933248 hasPrimaryLocation W829332481 @default.
- W82933248 hasRelatedWork W1523615189 @default.
- W82933248 hasRelatedWork W1618574083 @default.
- W82933248 hasRelatedWork W1672270409 @default.
- W82933248 hasRelatedWork W1980208745 @default.
- W82933248 hasRelatedWork W1983570812 @default.
- W82933248 hasRelatedWork W1997958307 @default.
- W82933248 hasRelatedWork W2000505533 @default.
- W82933248 hasRelatedWork W2046389056 @default.
- W82933248 hasRelatedWork W2060392143 @default.
- W82933248 hasRelatedWork W2067109487 @default.
- W82933248 hasRelatedWork W2073538140 @default.
- W82933248 hasRelatedWork W2079555304 @default.
- W82933248 hasRelatedWork W2089000584 @default.
- W82933248 hasRelatedWork W2092438538 @default.
- W82933248 hasRelatedWork W2094117799 @default.
- W82933248 hasRelatedWork W2248022835 @default.
- W82933248 hasRelatedWork W2285684026 @default.
- W82933248 hasRelatedWork W2595211893 @default.
- W82933248 hasRelatedWork W2921938470 @default.
- W82933248 hasRelatedWork W1641556011 @default.
- W82933248 isParatext "false" @default.
- W82933248 isRetracted "false" @default.
- W82933248 magId "82933248" @default.
- W82933248 workType "dissertation" @default.