Matches in SemOpenAlex for { <https://semopenalex.org/work/W82946689> ?p ?o ?g. }
- W82946689 endingPage "851" @default.
- W82946689 startingPage "842" @default.
- W82946689 abstract "Dynamic contrast-enhanced magnetic resonance imaging is a clinical imaging modality for the detection and diagnosis of breast lesions. Analytic methods were compared for diagnostic feature selection and the performance of lesion classification to differentiate between malignant and benign lesions in patients.The study included 43 malignant and 28 benign histologically proved lesions. Eight morphologic parameters, 10 gray-level co-occurrence matrix texture features, and 14 Laws texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for the selection of the best predictors of malignant lesions among the normalized features.Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with an area under the receiver-operating characteristic curve (AUC) of 0.82 and accuracy of 0.76. The diagnostic performance of these four features computed on the basis of logistic regression yielded an AUC of 0.80 (95% confidence interval [CI], 0.688-0.905), similar to that of ANN. The analysis also showed that the odds of a malignant lesion decreased by 48% (95% CI, 25%-92%) for every increase of 1 standard deviation in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model composed of compactness, normalized radial length entropy, and gray-level sum average was selected, and it had the highest overall accuracy, 0.75, among all models, with an AUC of 0.77 (95% CI, 0.660-0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors compactness and Law_LS had an AUC of 0.79 (95% CI, 0.672-0.898).The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology uses a sophisticated nonlinear model, while logistic regression analysis provides insightful information to enhance the interpretation of the model features." @default.
- W82946689 created "2016-06-24" @default.
- W82946689 creator A5000667041 @default.
- W82946689 creator A5013455359 @default.
- W82946689 creator A5019815608 @default.
- W82946689 creator A5058120847 @default.
- W82946689 date "2009-07-01" @default.
- W82946689 modified "2023-09-29" @default.
- W82946689 title "Prediction of Malignant Breast Lesions from MRI Features" @default.
- W82946689 cites W1486210018 @default.
- W82946689 cites W1955877755 @default.
- W82946689 cites W1972344473 @default.
- W82946689 cites W1973448749 @default.
- W82946689 cites W1980483305 @default.
- W82946689 cites W1983024255 @default.
- W82946689 cites W1996440595 @default.
- W82946689 cites W1998550745 @default.
- W82946689 cites W2007754818 @default.
- W82946689 cites W2009085725 @default.
- W82946689 cites W2012289572 @default.
- W82946689 cites W2020065098 @default.
- W82946689 cites W2030892080 @default.
- W82946689 cites W2039797735 @default.
- W82946689 cites W2040615655 @default.
- W82946689 cites W2044465660 @default.
- W82946689 cites W2046751517 @default.
- W82946689 cites W2059165786 @default.
- W82946689 cites W2061568180 @default.
- W82946689 cites W2070173579 @default.
- W82946689 cites W2075747141 @default.
- W82946689 cites W2076209107 @default.
- W82946689 cites W2084139018 @default.
- W82946689 cites W2090077439 @default.
- W82946689 cites W2092762545 @default.
- W82946689 cites W2101849231 @default.
- W82946689 cites W2111814036 @default.
- W82946689 cites W2113358471 @default.
- W82946689 cites W2121394390 @default.
- W82946689 cites W2123162799 @default.
- W82946689 cites W2130123844 @default.
- W82946689 cites W2328176404 @default.
- W82946689 cites W4366956054 @default.
- W82946689 doi "https://doi.org/10.1016/j.acra.2009.01.029" @default.
- W82946689 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2832583" @default.
- W82946689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19409817" @default.
- W82946689 hasPublicationYear "2009" @default.
- W82946689 type Work @default.
- W82946689 sameAs 82946689 @default.
- W82946689 citedByCount "77" @default.
- W82946689 countsByYear W829466892012 @default.
- W82946689 countsByYear W829466892013 @default.
- W82946689 countsByYear W829466892014 @default.
- W82946689 countsByYear W829466892015 @default.
- W82946689 countsByYear W829466892016 @default.
- W82946689 countsByYear W829466892017 @default.
- W82946689 countsByYear W829466892018 @default.
- W82946689 countsByYear W829466892019 @default.
- W82946689 countsByYear W829466892020 @default.
- W82946689 countsByYear W829466892021 @default.
- W82946689 countsByYear W829466892022 @default.
- W82946689 countsByYear W829466892023 @default.
- W82946689 crossrefType "journal-article" @default.
- W82946689 hasAuthorship W82946689A5000667041 @default.
- W82946689 hasAuthorship W82946689A5013455359 @default.
- W82946689 hasAuthorship W82946689A5019815608 @default.
- W82946689 hasAuthorship W82946689A5058120847 @default.
- W82946689 hasBestOaLocation W829466892 @default.
- W82946689 hasConcept C121608353 @default.
- W82946689 hasConcept C126322002 @default.
- W82946689 hasConcept C126838900 @default.
- W82946689 hasConcept C142724271 @default.
- W82946689 hasConcept C143409427 @default.
- W82946689 hasConcept C148483581 @default.
- W82946689 hasConcept C151956035 @default.
- W82946689 hasConcept C153180895 @default.
- W82946689 hasConcept C154945302 @default.
- W82946689 hasConcept C156957248 @default.
- W82946689 hasConcept C27438332 @default.
- W82946689 hasConcept C2781156865 @default.
- W82946689 hasConcept C2989005 @default.
- W82946689 hasConcept C33923547 @default.
- W82946689 hasConcept C41008148 @default.
- W82946689 hasConcept C44249647 @default.
- W82946689 hasConcept C530470458 @default.
- W82946689 hasConcept C58471807 @default.
- W82946689 hasConcept C71924100 @default.
- W82946689 hasConcept C89600930 @default.
- W82946689 hasConceptScore W82946689C121608353 @default.
- W82946689 hasConceptScore W82946689C126322002 @default.
- W82946689 hasConceptScore W82946689C126838900 @default.
- W82946689 hasConceptScore W82946689C142724271 @default.
- W82946689 hasConceptScore W82946689C143409427 @default.
- W82946689 hasConceptScore W82946689C148483581 @default.
- W82946689 hasConceptScore W82946689C151956035 @default.
- W82946689 hasConceptScore W82946689C153180895 @default.
- W82946689 hasConceptScore W82946689C154945302 @default.
- W82946689 hasConceptScore W82946689C156957248 @default.
- W82946689 hasConceptScore W82946689C27438332 @default.