Matches in SemOpenAlex for { <https://semopenalex.org/work/W82996118> ?p ?o ?g. }
- W82996118 abstract "This thesis presents a novel set of image analysis tools developed for the purpose of assisting radiologists with the task of detecting and characterizing breast lesions in image data acquired using magnetic resonance imaging (MRI). MRI is increasingly being used in the clinical setting as an adjunct to x-ray mammography (which is, itself, the basis of breast cancer screening programs worldwide) and ultrasound. Of these imaging modalities, MRI has the highest sensitivity to invasive cancer and to multifocal disease. MRI is the most reliable method for assessing tumour size and extent compared to the gold standard histopathology. It also shows great promise for the improved screening of younger women (with denser, more radio opaque breasts) and, potentially, for women at high risk. Breast MRI presently has two major shortcomings. First, although its sensitivity is high its specificity is relatively poor; i.e. the method detects many false positives. Second, the method involves acquiring several high-resolution image volumes before, during and after the injection of a contrast agent. The large volume of data makes the task of interpretation by the radiologist both complex and time-consuming. These shortcomings have motivated the research and development of the computer-aided detection systems designed to improve the efficiency and accuracy of interpretation by the radiologist. Whilst such systems have helped to improve the sensitivity/specificity of interpretation, it is the premise of this thesis that further gains are possible through automated image analysis. However, the automated analysis of breast MRI presents several technical challenges. This thesis investigates several of these, noise filtering, parametric modelling of contrast enhancement, segmentation of suspicious tissue and quantitative characterisation and classification of suspicious lesions. In relation to noise filtering, a new denoising algorithm for dynamic contrast-enhanced (DCE-MRI) data is presented, called the Dynamic Non-Local Means (DNLM). The DCE-MR image data is inherently contaminated by Rician noise and, additionally, the limited acquisition time per volume and the use of fat-suppression diminishes the signal-to-noise ratio. The DNLM algorithm, specifically designed for the DCE-MRI, is able to attenuate this noise by exploiting the redundancy of the information between the different temporal volumes, while taking into account the contrast enhancement of the tissue. Empirical results show that the algorithm more effectively attenuates noise in the DCE-MRI data than any of the previously proposed algorithms. In relation to parametric modelling of contrast enhancement, a new empiric model of contrast enhancement has been developed that is parsimonious in form. The proposed model serves as the basis for the segmentation and feature extraction algorithms presented in the thesis. In contrast to pharmacokinetic models, the proposed model does not rely on measured parameters or constants relating to the type or density of the tissue. It also does not assume a particular relationship between the observed changes in signal intensity and the concentration of the contrast agent. Empirical results demonstrate that the proposed model fits real data better than either the Tofts or Brix models and equally as well as the more complicated Hayton model. In relation to the automatic segmentation of suspicious lesions, a novel method is presented, based on seeded region growing and merging, using criteria based on both the original image MR values and the fitted parameters of the proposed model of contrast enhancement. Empirical results demonstrate the efficacy of the method, both as a tool to assist the clinician with the task of locating suspicious tissue and for extracting quantitative features. Finally, in relation to the quantitative characterisation and classification of suspicious lesions, a novel classifier (i.e. a set of features together with a classification method) is presented. Features were extracted from noise-filtered and segmented-image volumes and were based both on well-known features and several new ones (principally, on the proposed model of contrast enhancement). Empirical results, based on routine clinical breast MRI data, show that the resulting classifier performs better than other such classifiers reported in the literature. Therefore, this thesis demonstrates that improvements in both sensitivity and specificity are possible through automated image analysis." @default.
- W82996118 created "2016-06-24" @default.
- W82996118 creator A5020982522 @default.
- W82996118 date "2010-05-01" @default.
- W82996118 modified "2023-09-27" @default.
- W82996118 title "Computer Aided Analysis of Dynamic Contrast Enhanced MRI of Breast Cancer" @default.
- W82996118 cites W1238092070 @default.
- W82996118 cites W1510751240 @default.
- W82996118 cites W1577109989 @default.
- W82996118 cites W1593077517 @default.
- W82996118 cites W1601355487 @default.
- W82996118 cites W1673090216 @default.
- W82996118 cites W1830094849 @default.
- W82996118 cites W1847264086 @default.
- W82996118 cites W1854566075 @default.
- W82996118 cites W1936495621 @default.
- W82996118 cites W1963913232 @default.
- W82996118 cites W1965728888 @default.
- W82996118 cites W1967735756 @default.
- W82996118 cites W1969031137 @default.
- W82996118 cites W1972544340 @default.
- W82996118 cites W1976497875 @default.
- W82996118 cites W1977942716 @default.
- W82996118 cites W1991349032 @default.
- W82996118 cites W1997995944 @default.
- W82996118 cites W1999244633 @default.
- W82996118 cites W2001002651 @default.
- W82996118 cites W2004217976 @default.
- W82996118 cites W2006269342 @default.
- W82996118 cites W2007754818 @default.
- W82996118 cites W2010115471 @default.
- W82996118 cites W2011344206 @default.
- W82996118 cites W2011845927 @default.
- W82996118 cites W2017399967 @default.
- W82996118 cites W2023438527 @default.
- W82996118 cites W2028169915 @default.
- W82996118 cites W2033132448 @default.
- W82996118 cites W2036913456 @default.
- W82996118 cites W2044465660 @default.
- W82996118 cites W2044724969 @default.
- W82996118 cites W2047502970 @default.
- W82996118 cites W2053145758 @default.
- W82996118 cites W2053370170 @default.
- W82996118 cites W2058054355 @default.
- W82996118 cites W2059165786 @default.
- W82996118 cites W2059784307 @default.
- W82996118 cites W2059824201 @default.
- W82996118 cites W2061568180 @default.
- W82996118 cites W2064733273 @default.
- W82996118 cites W2064937521 @default.
- W82996118 cites W2066747909 @default.
- W82996118 cites W2071105408 @default.
- W82996118 cites W2071315978 @default.
- W82996118 cites W2072246398 @default.
- W82996118 cites W2073660032 @default.
- W82996118 cites W2076118331 @default.
- W82996118 cites W2081859730 @default.
- W82996118 cites W2082559811 @default.
- W82996118 cites W2086543716 @default.
- W82996118 cites W2087070363 @default.
- W82996118 cites W2088572954 @default.
- W82996118 cites W2095695145 @default.
- W82996118 cites W2096579040 @default.
- W82996118 cites W2097073572 @default.
- W82996118 cites W2098693229 @default.
- W82996118 cites W2099244020 @default.
- W82996118 cites W2099440229 @default.
- W82996118 cites W2099741732 @default.
- W82996118 cites W2099808703 @default.
- W82996118 cites W2104095591 @default.
- W82996118 cites W2104496317 @default.
- W82996118 cites W2104871686 @default.
- W82996118 cites W2106946272 @default.
- W82996118 cites W2108207814 @default.
- W82996118 cites W2108610949 @default.
- W82996118 cites W2112450318 @default.
- W82996118 cites W2113824004 @default.
- W82996118 cites W2114487863 @default.
- W82996118 cites W2114509411 @default.
- W82996118 cites W2116011625 @default.
- W82996118 cites W2116278801 @default.
- W82996118 cites W2119821739 @default.
- W82996118 cites W2123287138 @default.
- W82996118 cites W2130880307 @default.
- W82996118 cites W2132140814 @default.
- W82996118 cites W2132549764 @default.
- W82996118 cites W2133003941 @default.
- W82996118 cites W2133059825 @default.
- W82996118 cites W2133394145 @default.
- W82996118 cites W2133793172 @default.
- W82996118 cites W2134456733 @default.
- W82996118 cites W2135036909 @default.
- W82996118 cites W2135761300 @default.
- W82996118 cites W2136396015 @default.
- W82996118 cites W2136722853 @default.
- W82996118 cites W2137050582 @default.
- W82996118 cites W2137676365 @default.
- W82996118 cites W2137901785 @default.
- W82996118 cites W2139276174 @default.
- W82996118 cites W2139951616 @default.