Matches in SemOpenAlex for { <https://semopenalex.org/work/W834869842> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W834869842 abstract "The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least 25 C colder than the coldest expected operating temperature. This quenching process is the opposite of the standard burn-in procedure. Normal burn-in raises the temperature (and voltage) to activate quickly any possible manufacturing defects remaining in the device that were not already rejected at a functional test step. The proposed inverse burn-in or quenching process is custom-tailored to the electronic device being used. The doping profiles, materials, minimum dimensions, interfaces, and thermal expansion coefficients are all taken into account in determining the ramp rate, dwell time, and temperature." @default.
- W834869842 created "2016-06-24" @default.
- W834869842 creator A5031413381 @default.
- W834869842 creator A5073899315 @default.
- W834869842 date "2011-11-01" @default.
- W834869842 modified "2023-09-26" @default.
- W834869842 title "Cryogenic Quenching Process for Electronic Part Screening" @default.
- W834869842 hasPublicationYear "2011" @default.
- W834869842 type Work @default.
- W834869842 sameAs 834869842 @default.
- W834869842 citedByCount "0" @default.
- W834869842 crossrefType "journal-article" @default.
- W834869842 hasAuthorship W834869842A5031413381 @default.
- W834869842 hasAuthorship W834869842A5073899315 @default.
- W834869842 hasConcept C116915560 @default.
- W834869842 hasConcept C121332964 @default.
- W834869842 hasConcept C127413603 @default.
- W834869842 hasConcept C159985019 @default.
- W834869842 hasConcept C163258240 @default.
- W834869842 hasConcept C179725390 @default.
- W834869842 hasConcept C192562407 @default.
- W834869842 hasConcept C200601418 @default.
- W834869842 hasConcept C34800285 @default.
- W834869842 hasConcept C43214815 @default.
- W834869842 hasConcept C97355855 @default.
- W834869842 hasConceptScore W834869842C116915560 @default.
- W834869842 hasConceptScore W834869842C121332964 @default.
- W834869842 hasConceptScore W834869842C127413603 @default.
- W834869842 hasConceptScore W834869842C159985019 @default.
- W834869842 hasConceptScore W834869842C163258240 @default.
- W834869842 hasConceptScore W834869842C179725390 @default.
- W834869842 hasConceptScore W834869842C192562407 @default.
- W834869842 hasConceptScore W834869842C200601418 @default.
- W834869842 hasConceptScore W834869842C34800285 @default.
- W834869842 hasConceptScore W834869842C43214815 @default.
- W834869842 hasConceptScore W834869842C97355855 @default.
- W834869842 hasLocation W8348698421 @default.
- W834869842 hasOpenAccess W834869842 @default.
- W834869842 hasPrimaryLocation W8348698421 @default.
- W834869842 hasRelatedWork W1489297696 @default.
- W834869842 hasRelatedWork W1568032709 @default.
- W834869842 hasRelatedWork W1575630301 @default.
- W834869842 hasRelatedWork W1626053264 @default.
- W834869842 hasRelatedWork W169728052 @default.
- W834869842 hasRelatedWork W1780148618 @default.
- W834869842 hasRelatedWork W1973158874 @default.
- W834869842 hasRelatedWork W1989373104 @default.
- W834869842 hasRelatedWork W2018920993 @default.
- W834869842 hasRelatedWork W2028762148 @default.
- W834869842 hasRelatedWork W2277854480 @default.
- W834869842 hasRelatedWork W2278395869 @default.
- W834869842 hasRelatedWork W2350628317 @default.
- W834869842 hasRelatedWork W2555759416 @default.
- W834869842 hasRelatedWork W2774204838 @default.
- W834869842 hasRelatedWork W2908696021 @default.
- W834869842 hasRelatedWork W3080573118 @default.
- W834869842 hasRelatedWork W797162698 @default.
- W834869842 hasRelatedWork W828366970 @default.
- W834869842 hasRelatedWork W3110259890 @default.
- W834869842 isParatext "false" @default.
- W834869842 isRetracted "false" @default.
- W834869842 magId "834869842" @default.
- W834869842 workType "article" @default.