Matches in SemOpenAlex for { <https://semopenalex.org/work/W83493412> ?p ?o ?g. }
Showing items 1 to 44 of
44
with 100 items per page.
- W83493412 abstract "Preface PART I: Design of Multifunctional Porous MOFs DESIGN OF POROUS COORDINATION POLYMER/METAL-ORGANIC FRAMEWORKS: PAST, PRESENT AND FUTURE Introduction Background and Ongoing Chemistry of Porous Coordination Polymers Multifunctional Frameworks Preparation of Multifunctional Frameworks Perspectives DESIGN OF FUNCTIONAL METAL-ORGANIC FRAMEWORKS BY POST-SYNTHETIC MODIFICATION Building a MOFs Toolbox by Post-Synthetic Modification Post-Functionalization of MOFs by Host-Guest Interactions Post-Functionalization of MOFs Based on Coordination Chemistry Post-Functionalization of MOFs by Covalent Bonds Tandem Post-Modification for the Immobilization of Organometallic Catalysts Critical Assessment Conclusion PART II: Gas Storage and Separation Applications THERMODYNAMIC METHODS FOR PREDICTION OF GAS SEPARATION IN FLEXIBLE FRAMEWORKS Introduction Theoretical Background Molecular Simulation Methods Analytical Methods Based on Experimental Data Outlook SEPARATION AND PURIFICATION OF GASES BY MOFS Introduction General Principles of Gas Separation and Purification MOFs for Separation and Purification Processes Conclusions and Perspectives OPPORTUNITIES FOR MOFS IN CO2 CAPTURE FROM FLUE GASES, NATURAL GAS, AND SYNGAS BY ADSORPTION Introduction General Introduction to Pressure Swing Adsorption Production of H2 from Syngas CO2 Removal from Natural Gas Post-Combustion CO2 Capture MOFs Conclusions MANUFACTURE OF MOF THIN FILMS ON STRUCTURED SUPPORTS FOR SEPARATION AND CATALYSIS Advantages and Limitations of Membrane Technologies for Gas and Liquid Separation Mechanisms of Mass Transport and Separation Synthesis of Molecular Sieve Membranes Application of MOF Membranes Limitations Conclusions and Outlook RESEARCH STATUS OF METAL-ORGANIC FRAMEWORKS FOR ON-BOARD CRYO-ADSORPTIVE HYDROGEN STORAGE APPLICATIONS Introduction - Research Problem and Significance MOFs as Adsorptive Hydrogen Storage Options Experimental Techniques and Methods for Performance and Thermodynamic Assessment of Porous MOFs for Hydrogen Storage Material Research Results From Laboratory-Scale Materials to Engineering Conclusion PART III: Bulk Chemistry Applications SEPARATION OF XYLENE ISOMERS Xylene Separation: Industrial Processes, Adsorbents, and Separation Principles Properties of MOFs Versus Zeolites in Xylene Separations Separation of Xylenes Using MIL-47 and MIL-53 Conclusions METAL-ORGANIC FRAMEWORKS AS CATALYSTS FOR ORGANIC REACTIONS Introduction MOFs with Catalytically Active Metal Nodes in the Framework Catalytic Functionalization of Organic Framework Linkers Homochiral MOFs MOF-Encapsulated Catalytically Active Guests Mesoporous MOFs Conclusions PART IV: Medical Applications BIOMEDICAL APPLICATIONS OF METAL-ORGANIC FRAMEWORKS Introduction MOFs for Bioapplications Therapeutics Diagnostics From Synthesis of Nanoparticles to Surface Modification and Shaping Discussion and Conclusion METAL-ORGANIC FRAMEWORKS FOR BIOMEDICAL IMAGING Introduction Gadolinium Carboxylate NMOFs Manganese Carboxylate NMOFs Iron Carboxylate NMOFs: The MIL Family Iodinated NMOFs: CT Contrast Agents Lanthanide Nucleotide NMOFs Guest Encapsulation within NMOFs Conclusion PART V: Physical Applications LUMINESCENT METAL-ORGANIC FRAMEWORKS Introduction Luminescence Theory Ligand-Based Luminescence Metal-Based Luminescence Guest-Induced Luminescence Applications of Luminescent MOFs Conclusion DEPOSITION OF THIN FILMS FOR SENSOR APPLICATIONS Introduction Literature Survey Signal Transduction Modes Considerations in Selecting MOFs for Sensing Applications MOF Thin Film Growth: Methods, Mechanisms, and Limitations Conclusions and Perspectives PART VI: Large-Scale Synthesis and Shaping of MOFs INDUSTRIAL MOF SYNTHESIS Introduction Raw Materials Synthesis Shaping Applications Conclusion and Outlook MOF SHAPING AND IMMOBILISATION Introduction MOF@Fiber Composite Materials Requirements of Adsorbents for Individual Protection MOFs in Monolithic Structures" @default.
- W83493412 created "2016-06-24" @default.
- W83493412 creator A5062685239 @default.
- W83493412 date "2011-07-19" @default.
- W83493412 modified "2023-10-10" @default.
- W83493412 title "Metal‐Organic Frameworks" @default.
- W83493412 doi "https://doi.org/10.1002/9783527635856" @default.
- W83493412 hasPublicationYear "2011" @default.
- W83493412 type Work @default.
- W83493412 sameAs 83493412 @default.
- W83493412 citedByCount "275" @default.
- W83493412 countsByYear W834934122012 @default.
- W83493412 countsByYear W834934122013 @default.
- W83493412 countsByYear W834934122014 @default.
- W83493412 countsByYear W834934122015 @default.
- W83493412 countsByYear W834934122016 @default.
- W83493412 countsByYear W834934122017 @default.
- W83493412 countsByYear W834934122018 @default.
- W83493412 countsByYear W834934122019 @default.
- W83493412 countsByYear W834934122020 @default.
- W83493412 countsByYear W834934122021 @default.
- W83493412 countsByYear W834934122022 @default.
- W83493412 countsByYear W834934122023 @default.
- W83493412 crossrefType "book" @default.
- W83493412 hasAuthorship W83493412A5062685239 @default.
- W83493412 hasConcept C39432304 @default.
- W83493412 hasConceptScore W83493412C39432304 @default.
- W83493412 hasLocation W834934121 @default.
- W83493412 hasOpenAccess W83493412 @default.
- W83493412 hasPrimaryLocation W834934121 @default.
- W83493412 hasRelatedWork W2110536732 @default.
- W83493412 hasRelatedWork W2335507810 @default.
- W83493412 hasRelatedWork W2371680562 @default.
- W83493412 hasRelatedWork W2374021052 @default.
- W83493412 hasRelatedWork W2800946623 @default.
- W83493412 hasRelatedWork W2899084033 @default.
- W83493412 hasRelatedWork W3007404728 @default.
- W83493412 hasRelatedWork W3048693357 @default.
- W83493412 hasRelatedWork W3206420609 @default.
- W83493412 hasRelatedWork W4280521631 @default.
- W83493412 isParatext "false" @default.
- W83493412 isRetracted "false" @default.
- W83493412 magId "83493412" @default.
- W83493412 workType "book" @default.