Matches in SemOpenAlex for { <https://semopenalex.org/work/W836690559> ?p ?o ?g. }
- W836690559 abstract "In mobile computing, a technology is said to be ubiquitous, if it is integrated in everyday life to such an extend that it is taken for granted instead of actually being recognized as technology. There are already numerous examples for ubiquitous technologies, such as navigation systems, cell phones, or notebook computers. Many of these enable the users to participate in mobile networks and to benefit from location-aware applications. A prominent use case of ubiquitous computing and networking is the research area of inter-vehicular communication: road vehicles are planned to be equipped with computing units that have access to the vehicles' sensors and to wireless communication interfaces, so that vehicles can share information about experienced situations among each other. In doing so, the technique can be used to make road traffic safer, more efficient, and to provide a higher level of convenience to the passengers. To achieve these goals, a number of efficiency and convenience applications record and transmit the vehicles' trajectories, i.e., the sequence of positions over time. However, the transmission of trajectories can induce a significant load to the communication channel and may waste resources that are required by safety applications to work properly. To avoid this situation, a number of lossy trajectory compression algorithms have been proposed in literature that allow for an adjustable compression error bound. In this thesis, we examine compression algorithms for trajectory data. Though these algorithms are suitable for all sorts of movements, we focus on the use case of vehicular trajectory compression. We take a close look at state-of-the-art solutions that are based on geometric operations, namely line simplification and linear dead reckoning. We argue that though achieving good results, these models can not be the best possible approach with respect to the achieved compression ratio, because vehicular movements are not linear. Instead, we motivate the use of nonlinear algorithms and propose two geometric compression algorithms based on clothoid spline sketching and cubic spline interpolation, respectively. By means of an evaluation based on real-world trajectory data, we show that nonlinear algorithms can provide a better compression ratio than the optimal line simplification solution. While our spline interpolation based algorithm provides the best compression ratios, it implements a heuristic and therefore merely finds a locally optimal solution. We therefore turn to an information-theoretic approach and aim at finding an algorithm that provides the optimal compression ratio for a trajectory. We therefore use the Shannon information content to define the information content of a trajectory and propose a method to measure it, using a movement estimator, a discretization technique and a probability distribution. We suggest and evaluate different component implementations and find out that implementing an arithmetic coder based on this method yields significantly better compression ratios than the geometric approaches. We finally turn to lossless compression algorithms and consider the use of conventional byte string compression algorithms, such as several algorithms from the LZ family, the bzip2 algorithm and arithmetic coding. A plain application of these algorithms to the trajectories would not produce meaningful results, though, because subsequently measured trajectory positions that are close to each other are not necessarily represented by similar byte sequences that would be easy to compress. We therefore propose a byte encoder that preprocesses a trajectory into a form that can be compressed more effectively by the selected conventional compression algorithms. We evaluate the byte coder based on the same trajectory set and see that the achieved compression ratio nearly matches the results from the lossy arithmetic coder for the lowest selected error tolerance. With these results, we provide an answer to the question of how spatio-temporal trajectories can be compressed so that a maximum compression ratio can be achieved with respect to the application's accuracy requirements." @default.
- W836690559 created "2016-06-24" @default.
- W836690559 creator A5001793558 @default.
- W836690559 date "2013-01-01" @default.
- W836690559 modified "2023-09-27" @default.
- W836690559 title "A Long Movement Story Cut Short - On the Compression of Trajectory Data" @default.
- W836690559 cites W114273036 @default.
- W836690559 cites W1479928838 @default.
- W836690559 cites W1488678234 @default.
- W836690559 cites W1489091441 @default.
- W836690559 cites W1491827522 @default.
- W836690559 cites W1494199114 @default.
- W836690559 cites W1495343868 @default.
- W836690559 cites W1529790005 @default.
- W836690559 cites W158805393 @default.
- W836690559 cites W1599406659 @default.
- W836690559 cites W1600482701 @default.
- W836690559 cites W1610930163 @default.
- W836690559 cites W1633983593 @default.
- W836690559 cites W17040808 @default.
- W836690559 cites W1777016212 @default.
- W836690559 cites W1827384124 @default.
- W836690559 cites W183006378 @default.
- W836690559 cites W1933135861 @default.
- W836690559 cites W1968517638 @default.
- W836690559 cites W1973355601 @default.
- W836690559 cites W1975965284 @default.
- W836690559 cites W1978055661 @default.
- W836690559 cites W1981934656 @default.
- W836690559 cites W1987850851 @default.
- W836690559 cites W1990653637 @default.
- W836690559 cites W1993855803 @default.
- W836690559 cites W1995806396 @default.
- W836690559 cites W1995875735 @default.
- W836690559 cites W1996601688 @default.
- W836690559 cites W2009906570 @default.
- W836690559 cites W2020630862 @default.
- W836690559 cites W2022749020 @default.
- W836690559 cites W2038649859 @default.
- W836690559 cites W2039380350 @default.
- W836690559 cites W2047404108 @default.
- W836690559 cites W2047519109 @default.
- W836690559 cites W2049313001 @default.
- W836690559 cites W2057177057 @default.
- W836690559 cites W2060108852 @default.
- W836690559 cites W2069249448 @default.
- W836690559 cites W2081301152 @default.
- W836690559 cites W2084224084 @default.
- W836690559 cites W2084999849 @default.
- W836690559 cites W2099719636 @default.
- W836690559 cites W2106601118 @default.
- W836690559 cites W2107745473 @default.
- W836690559 cites W2108328714 @default.
- W836690559 cites W2111969977 @default.
- W836690559 cites W2112824976 @default.
- W836690559 cites W2114272723 @default.
- W836690559 cites W2114959810 @default.
- W836690559 cites W2115356364 @default.
- W836690559 cites W2115835080 @default.
- W836690559 cites W2122695052 @default.
- W836690559 cites W2122962290 @default.
- W836690559 cites W2122980342 @default.
- W836690559 cites W2127154035 @default.
- W836690559 cites W2127211454 @default.
- W836690559 cites W2128026023 @default.
- W836690559 cites W2138026948 @default.
- W836690559 cites W2138044257 @default.
- W836690559 cites W2141633817 @default.
- W836690559 cites W2147628959 @default.
- W836690559 cites W2148173348 @default.
- W836690559 cites W2148539226 @default.
- W836690559 cites W2153249319 @default.
- W836690559 cites W2153580689 @default.
- W836690559 cites W2156703312 @default.
- W836690559 cites W2158589654 @default.
- W836690559 cites W2161488606 @default.
- W836690559 cites W2161628678 @default.
- W836690559 cites W2169528473 @default.
- W836690559 cites W2170474669 @default.
- W836690559 cites W2480859604 @default.
- W836690559 cites W2788214161 @default.
- W836690559 cites W3140968660 @default.
- W836690559 cites W37292689 @default.
- W836690559 cites W616502060 @default.
- W836690559 cites W634836346 @default.
- W836690559 cites W640156484 @default.
- W836690559 cites W73143588 @default.
- W836690559 cites W82705568 @default.
- W836690559 cites W83801381 @default.
- W836690559 hasPublicationYear "2013" @default.
- W836690559 type Work @default.
- W836690559 sameAs 836690559 @default.
- W836690559 citedByCount "0" @default.
- W836690559 crossrefType "dissertation" @default.
- W836690559 hasAuthorship W836690559A5001793558 @default.
- W836690559 hasConcept C120314980 @default.
- W836690559 hasConcept C120665830 @default.
- W836690559 hasConcept C121332964 @default.
- W836690559 hasConcept C127162648 @default.
- W836690559 hasConcept C1276947 @default.