Matches in SemOpenAlex for { <https://semopenalex.org/work/W837228064> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W837228064 abstract "Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with closure-constraints into an equivalent tree-topology system, and thus allows one to take advantage of the host of techniques available to the latter class of systems. This technology is highly suitable for the class of multibody systems where the closure-constraints are local, i.e., where they are confined to small groupings of bodies within the system. Important examples of such local closure-constraints are constraints associated with four-bar linkages, geared motors, differential suspensions, etc. One can eliminate these closure-constraints and convert the system into a tree-topology system by embedding the constraints directly into the system dynamics and effectively replacing the body groupings with virtual aggregate bodies. Once eliminated, one can apply the well-known results and algorithms for tree-topology systems to solve the dynamics of such closed-chain system." @default.
- W837228064 created "2016-06-24" @default.
- W837228064 creator A5006470096 @default.
- W837228064 creator A5033106393 @default.
- W837228064 date "2011-05-01" @default.
- W837228064 modified "2023-09-26" @default.
- W837228064 title "Constraint Embedding Technique for Multibody System Dynamics" @default.
- W837228064 hasPublicationYear "2011" @default.
- W837228064 type Work @default.
- W837228064 sameAs 837228064 @default.
- W837228064 citedByCount "0" @default.
- W837228064 crossrefType "journal-article" @default.
- W837228064 hasAuthorship W837228064A5006470096 @default.
- W837228064 hasAuthorship W837228064A5033106393 @default.
- W837228064 hasConcept C113174947 @default.
- W837228064 hasConcept C114614502 @default.
- W837228064 hasConcept C121332964 @default.
- W837228064 hasConcept C134306372 @default.
- W837228064 hasConcept C154945302 @default.
- W837228064 hasConcept C184720557 @default.
- W837228064 hasConcept C33923547 @default.
- W837228064 hasConcept C41008148 @default.
- W837228064 hasConcept C41608201 @default.
- W837228064 hasConcept C62520636 @default.
- W837228064 hasConcept C67865112 @default.
- W837228064 hasConceptScore W837228064C113174947 @default.
- W837228064 hasConceptScore W837228064C114614502 @default.
- W837228064 hasConceptScore W837228064C121332964 @default.
- W837228064 hasConceptScore W837228064C134306372 @default.
- W837228064 hasConceptScore W837228064C154945302 @default.
- W837228064 hasConceptScore W837228064C184720557 @default.
- W837228064 hasConceptScore W837228064C33923547 @default.
- W837228064 hasConceptScore W837228064C41008148 @default.
- W837228064 hasConceptScore W837228064C41608201 @default.
- W837228064 hasConceptScore W837228064C62520636 @default.
- W837228064 hasConceptScore W837228064C67865112 @default.
- W837228064 hasLocation W8372280641 @default.
- W837228064 hasOpenAccess W837228064 @default.
- W837228064 hasPrimaryLocation W8372280641 @default.
- W837228064 hasRelatedWork W157079339 @default.
- W837228064 hasRelatedWork W1956812372 @default.
- W837228064 hasRelatedWork W1964901201 @default.
- W837228064 hasRelatedWork W1979468853 @default.
- W837228064 hasRelatedWork W2000873346 @default.
- W837228064 hasRelatedWork W2022091803 @default.
- W837228064 hasRelatedWork W2043973177 @default.
- W837228064 hasRelatedWork W2061740875 @default.
- W837228064 hasRelatedWork W2137617636 @default.
- W837228064 hasRelatedWork W2139038136 @default.
- W837228064 hasRelatedWork W2152415870 @default.
- W837228064 hasRelatedWork W2203690438 @default.
- W837228064 hasRelatedWork W2219225786 @default.
- W837228064 hasRelatedWork W2290964291 @default.
- W837228064 hasRelatedWork W2514357593 @default.
- W837228064 hasRelatedWork W268496118 @default.
- W837228064 hasRelatedWork W3042870379 @default.
- W837228064 hasRelatedWork W3104916418 @default.
- W837228064 hasRelatedWork W5097439 @default.
- W837228064 hasRelatedWork W2125343882 @default.
- W837228064 isParatext "false" @default.
- W837228064 isRetracted "false" @default.
- W837228064 magId "837228064" @default.
- W837228064 workType "article" @default.