Matches in SemOpenAlex for { <https://semopenalex.org/work/W839357690> ?p ?o ?g. }
- W839357690 abstract "In this thesis we consider two sets of combinatorial structures defined on an Eulerian graph: the Eulerian orientations and Euler tours. We are interested in the computational problems of counting (computing the number of elements in the set) and sampling (generating a random element of the set). Specifically, we are interested in the question of when there exists an efficient algorithm for counting or sampling the elements of either set. The Eulerian orientations of a number of classes of planar lattices are of practical significance as they correspond to configurations of certain models studied in statistical physics. In 1992 Mihail and Winkler showed that counting Eulerian orientations of a general Eulerian graph is #P-complete and demonstrated that the problem of sampling an Eulerian orientation can be reduced to the tractable problem of sampling a perfect matching of a bipartite graph. We present a proof that this problem remains #Pcomplete when the input is restricted to being a planar graph, and analyse a natural algorithm for generating random Eulerian orientations of one of the afore-mentioned planar lattices. Moreover, we make some progress towards classifying the range of planar graphs on which this algorithm is rapidly mixing by exhibiting an infinite class of planar graphs for which the algorithm will always take an exponential amount of time to converge. The problem of counting the Euler tours of undirected graphs has proven to be less amenable to analysis than that of Eulerian orientations. Although it has been known for many years that the number of Euler tours of any directed graph can be computed in polynomial time, until recently very little was known about the complexity of counting Euler tours of an undirected graph. Brightwell and Winkler showed that this problem is #P-complete in 2005 and, apart from a few very simple examples, e.g., series-parellel graphs, there are no known tractable cases, nor are there any good reasons to believe the problem to be intractable. Moreover, despite several unsuccessful attempts, there has been no progress made on the question of approximability. Indeed, this problem was considered to be one of the more difficult open problems in approximate counting since long before the complexity of exact counting was resolved. By considering a randomised input model, we are able to show that a very simple algorithm can sample or approximately count the Euler tours of almost every d-in/d-out directed graph in expected polynomial time. Then, we present some partial results towards showing that this algorithm can be used to sample or approximately count the Euler tours of almost every 2d-regular graph in expected polynomial time. We also provide some empirical evidence to support the unproven conjecture required to obtain this result. As a sideresult of this work, we obtain an asymptotic characterisation of the distribution of the number of Eulerian orientations of a random 2d-regular graph." @default.
- W839357690 created "2016-06-24" @default.
- W839357690 creator A5004982470 @default.
- W839357690 date "2010-01-01" @default.
- W839357690 modified "2023-09-27" @default.
- W839357690 title "Counting and sampling problems on Eulerian graphs" @default.
- W839357690 cites W1266738890 @default.
- W839357690 cites W1278605765 @default.
- W839357690 cites W151940510 @default.
- W839357690 cites W1527197079 @default.
- W839357690 cites W1530042113 @default.
- W839357690 cites W1557932671 @default.
- W839357690 cites W1579213680 @default.
- W839357690 cites W1590902061 @default.
- W839357690 cites W1592213313 @default.
- W839357690 cites W1595409123 @default.
- W839357690 cites W1968057111 @default.
- W839357690 cites W1976418263 @default.
- W839357690 cites W1976625337 @default.
- W839357690 cites W1977033885 @default.
- W839357690 cites W1978245109 @default.
- W839357690 cites W1979740015 @default.
- W839357690 cites W1984327409 @default.
- W839357690 cites W1989769501 @default.
- W839357690 cites W1991825372 @default.
- W839357690 cites W1991832118 @default.
- W839357690 cites W1991965073 @default.
- W839357690 cites W1992158142 @default.
- W839357690 cites W1997698259 @default.
- W839357690 cites W1999432334 @default.
- W839357690 cites W1999757918 @default.
- W839357690 cites W2000597435 @default.
- W839357690 cites W2002234069 @default.
- W839357690 cites W2003554015 @default.
- W839357690 cites W2003718433 @default.
- W839357690 cites W2004724832 @default.
- W839357690 cites W2006912660 @default.
- W839357690 cites W2012041962 @default.
- W839357690 cites W2012902191 @default.
- W839357690 cites W2013445331 @default.
- W839357690 cites W2017777628 @default.
- W839357690 cites W2018691712 @default.
- W839357690 cites W2020286894 @default.
- W839357690 cites W2024710200 @default.
- W839357690 cites W2028122921 @default.
- W839357690 cites W2028817978 @default.
- W839357690 cites W2035402840 @default.
- W839357690 cites W2035476608 @default.
- W839357690 cites W2036265926 @default.
- W839357690 cites W2037114373 @default.
- W839357690 cites W2060615452 @default.
- W839357690 cites W2062105278 @default.
- W839357690 cites W2062877152 @default.
- W839357690 cites W2069455721 @default.
- W839357690 cites W2071414330 @default.
- W839357690 cites W2072211488 @default.
- W839357690 cites W2078391137 @default.
- W839357690 cites W2080126517 @default.
- W839357690 cites W2084073535 @default.
- W839357690 cites W2084073683 @default.
- W839357690 cites W2089913552 @default.
- W839357690 cites W2091476183 @default.
- W839357690 cites W2094792408 @default.
- W839357690 cites W2100057426 @default.
- W839357690 cites W2106285343 @default.
- W839357690 cites W2109260999 @default.
- W839357690 cites W2115826669 @default.
- W839357690 cites W2121163052 @default.
- W839357690 cites W2123934736 @default.
- W839357690 cites W2136219960 @default.
- W839357690 cites W2137407595 @default.
- W839357690 cites W2139671760 @default.
- W839357690 cites W2140422174 @default.
- W839357690 cites W2141731854 @default.
- W839357690 cites W2146766934 @default.
- W839357690 cites W2152324554 @default.
- W839357690 cites W2152646636 @default.
- W839357690 cites W2157633041 @default.
- W839357690 cites W2161611531 @default.
- W839357690 cites W2165813048 @default.
- W839357690 cites W2167266655 @default.
- W839357690 cites W2168256531 @default.
- W839357690 cites W2316063597 @default.
- W839357690 cites W2500069809 @default.
- W839357690 cites W2567789000 @default.
- W839357690 cites W2768011086 @default.
- W839357690 cites W2911361414 @default.
- W839357690 cites W2928778467 @default.
- W839357690 cites W2963625492 @default.
- W839357690 cites W3037261785 @default.
- W839357690 cites W3111890340 @default.
- W839357690 cites W3144881883 @default.
- W839357690 cites W3149756008 @default.
- W839357690 cites W561130820 @default.
- W839357690 cites W634962210 @default.
- W839357690 hasPublicationYear "2010" @default.
- W839357690 type Work @default.
- W839357690 sameAs 839357690 @default.
- W839357690 citedByCount "4" @default.
- W839357690 countsByYear W8393576902017 @default.