Matches in SemOpenAlex for { <https://semopenalex.org/work/W83938146> ?p ?o ?g. }
- W83938146 abstract "The merits of combining the positive elements of the rule-based and data-driven approaches to MT are clear: a combined model has the potential to be highly accurate, robust, cost-effective to build and adaptable. While the merits are clear, however, how best to combine these techniques into a model which retains the positive characteristics of each approach, while inheriting as few of the disadvantages as possible, remains an unsolved problem. One possible solution to this challenge is the Data-Oriented Translation (DOT) model originally proposed by Poutsma (1998, 2000, 2003), which is based on Data-Oriented Parsing (DOP) (e.g. (Bod, 1992; Bod et al., 2003)) and combines examples, linguistic information and a statistical translation model.In this thesis, we seek to establish how the DOT model of translation relates to the other main MT methodologies currently in use. We find that this model differs from other hybrid models of MT in that it inextricably interweaves the philosophies of the rule-based, example-based and statistical approaches in an integrated framework.Although DOT embodies many positive characteristics on a theoretical level, it also inherits the computational complexity associated with DOP. Previous experiments assessing the performance of the DOT model of translation were small in scale and the training data used was not ideally suited to the task (Poutsma, 2000, 2003). However, the algorithmic limitations of the DOT implementation used to perform these experiments prevented a more informative assessment from being carried out. In this thesis, we look to the innovative solutions developed to meet the challenges of implementing the DOP model, and investigate their application to DOT. This investigation culminates in the development of a DOT system; this system allows us to perform translation experiments which are on a larger scale and incorporate greater translational complexity than heretofore. Our evaluation indicates that the positive characteristics of the model identified on a theoretical level are also in evidence when it is subjected to empirical assessment. For example, in terms of exact match accuracy, the DOT model outperforms an SMT model trained and tested on the same data by up to 89.73%.The DOP and DOT models for which we provide empirical evaluations assume contextfree phrase-structure tree representations. However, such models can also be developed for more sophisticated linguistic formalisms. In this thesis, we also focus on the efforts which have been made to integrate the representations of Lexical-Functional Grammar (LFG) with DOP and DOT. We investigate the usefulness of the algorithms developed for DOP (and adapted here to Tree-DOT) when implementing the (more complex) LFG-DOP and LFG-DOT models. We examine how constraints are employed in these models for more accurate disambiguation and seek an alternative methodology for improved constraint specification. We also hypothesise as to how the constraints used to predict both good parses and good translations might be pruned in a motivated fashion. Finally, we explore the relationship between translational equivalence and limited generalisation reusability for both the tree-based and LFG-based DOT models, focussing on how this relationship differs depending on which formalism is assumed." @default.
- W83938146 created "2016-06-24" @default.
- W83938146 creator A5038985518 @default.
- W83938146 date "2005-01-01" @default.
- W83938146 modified "2023-09-27" @default.
- W83938146 title "Data-oriented models of parsing and translation" @default.
- W83938146 cites W127405262 @default.
- W83938146 cites W1489409710 @default.
- W83938146 cites W1498668018 @default.
- W83938146 cites W1513148872 @default.
- W83938146 cites W1538174031 @default.
- W83938146 cites W1539587067 @default.
- W83938146 cites W1549285799 @default.
- W83938146 cites W1551104980 @default.
- W83938146 cites W1557279510 @default.
- W83938146 cites W1574661744 @default.
- W83938146 cites W1583697620 @default.
- W83938146 cites W1585763285 @default.
- W83938146 cites W1603545036 @default.
- W83938146 cites W1608909294 @default.
- W83938146 cites W1622422412 @default.
- W83938146 cites W1644866298 @default.
- W83938146 cites W1669992767 @default.
- W83938146 cites W1722351164 @default.
- W83938146 cites W1734853756 @default.
- W83938146 cites W1768003599 @default.
- W83938146 cites W1822852248 @default.
- W83938146 cites W1844099549 @default.
- W83938146 cites W1938853666 @default.
- W83938146 cites W1955233831 @default.
- W83938146 cites W1970961429 @default.
- W83938146 cites W1992254746 @default.
- W83938146 cites W2002597220 @default.
- W83938146 cites W2016687088 @default.
- W83938146 cites W2020477116 @default.
- W83938146 cites W2031351647 @default.
- W83938146 cites W2066748454 @default.
- W83938146 cites W2067694419 @default.
- W83938146 cites W2071606701 @default.
- W83938146 cites W2078861931 @default.
- W83938146 cites W2088781183 @default.
- W83938146 cites W2093647425 @default.
- W83938146 cites W2099832412 @default.
- W83938146 cites W2101105183 @default.
- W83938146 cites W2101418338 @default.
- W83938146 cites W2104399512 @default.
- W83938146 cites W2107990107 @default.
- W83938146 cites W2115655038 @default.
- W83938146 cites W2116016019 @default.
- W83938146 cites W2116316001 @default.
- W83938146 cites W2121357917 @default.
- W83938146 cites W2122404465 @default.
- W83938146 cites W2124164392 @default.
- W83938146 cites W2127713198 @default.
- W83938146 cites W2134235906 @default.
- W83938146 cites W2134495021 @default.
- W83938146 cites W2139403546 @default.
- W83938146 cites W2146214819 @default.
- W83938146 cites W2148497595 @default.
- W83938146 cites W2151844916 @default.
- W83938146 cites W2152302696 @default.
- W83938146 cites W2152862622 @default.
- W83938146 cites W2156985047 @default.
- W83938146 cites W2158388102 @default.
- W83938146 cites W2160233880 @default.
- W83938146 cites W2162539697 @default.
- W83938146 cites W2163068386 @default.
- W83938146 cites W2164732909 @default.
- W83938146 cites W2246695851 @default.
- W83938146 cites W28706907 @default.
- W83938146 cites W1627331591 @default.
- W83938146 hasPublicationYear "2005" @default.
- W83938146 type Work @default.
- W83938146 sameAs 83938146 @default.
- W83938146 citedByCount "18" @default.
- W83938146 countsByYear W839381462012 @default.
- W83938146 countsByYear W839381462021 @default.
- W83938146 crossrefType "dissertation" @default.
- W83938146 hasAuthorship W83938146A5038985518 @default.
- W83938146 hasConcept C104317684 @default.
- W83938146 hasConcept C105580179 @default.
- W83938146 hasConcept C114289077 @default.
- W83938146 hasConcept C119857082 @default.
- W83938146 hasConcept C121332964 @default.
- W83938146 hasConcept C124101348 @default.
- W83938146 hasConcept C127413603 @default.
- W83938146 hasConcept C149364088 @default.
- W83938146 hasConcept C154945302 @default.
- W83938146 hasConcept C185592680 @default.
- W83938146 hasConcept C186644900 @default.
- W83938146 hasConcept C201995342 @default.
- W83938146 hasConcept C2778755073 @default.
- W83938146 hasConcept C2780451532 @default.
- W83938146 hasConcept C41008148 @default.
- W83938146 hasConcept C55493867 @default.
- W83938146 hasConcept C62520636 @default.
- W83938146 hasConceptScore W83938146C104317684 @default.
- W83938146 hasConceptScore W83938146C105580179 @default.
- W83938146 hasConceptScore W83938146C114289077 @default.
- W83938146 hasConceptScore W83938146C119857082 @default.