Matches in SemOpenAlex for { <https://semopenalex.org/work/W842829644> ?p ?o ?g. }
- W842829644 abstract "In this manuscript we study hitting sets both from a combinatorial and from an algorithmic point of view. A hitting set is a subset of vertices of a hypergraph which intersects all the hyperedges. A packing is a subset of pairwise disjoint hyperedges. In the general case, there is no function linking the minimum size of a hitting set and a maximum size of a packing.The first part of this thesis is devoted to present upper bounds on the size of hitting sets, in particular this upper bounds are expressed in the size of the maximum packing. Most of them are satisfied when the dimension of Vapnik-Chervonenkis of the hypergraph is bounded. The originality of this thesis consists in using these hypergraph tools in order to obtain several results on graph problems. First we prove that a conjecture of Scott holds for maximal triangle-free graphs. Then we generalize a result of Chepoi, Estellon and Vaxes on dominating sets at large distance. We finally study a conjecture of Yannakakis and prove that it holds for several graph subclasses using VC-dimension.The second part of this thesis explores algorithmic aspects of hitting sets. More precisely we focus on parameterized complexity of graph separation problems where we are looking for hitting sets of a set of paths. Combining connectivity tools, important separator technique and Dilworth's theorem, we design an FPT algorithm for the Multicut problem parameterized by the size of the solution." @default.
- W842829644 created "2016-06-24" @default.
- W842829644 creator A5044190443 @default.
- W842829644 date "2013-12-09" @default.
- W842829644 modified "2023-09-28" @default.
- W842829644 title "Hitting sets : VC-dimension and Multicut" @default.
- W842829644 cites W111038805 @default.
- W842829644 cites W1221537183 @default.
- W842829644 cites W140456478 @default.
- W842829644 cites W1484040084 @default.
- W842829644 cites W1485150579 @default.
- W842829644 cites W1490651508 @default.
- W842829644 cites W1495916036 @default.
- W842829644 cites W1499660792 @default.
- W842829644 cites W1502643917 @default.
- W842829644 cites W1504941748 @default.
- W842829644 cites W1518816409 @default.
- W842829644 cites W1530699444 @default.
- W842829644 cites W1530753374 @default.
- W842829644 cites W1531960543 @default.
- W842829644 cites W1533487312 @default.
- W842829644 cites W1533605922 @default.
- W842829644 cites W1548164611 @default.
- W842829644 cites W1570425181 @default.
- W842829644 cites W1586475286 @default.
- W842829644 cites W1593947471 @default.
- W842829644 cites W1595412293 @default.
- W842829644 cites W1598441350 @default.
- W842829644 cites W1613749942 @default.
- W842829644 cites W1674875119 @default.
- W842829644 cites W1676006881 @default.
- W842829644 cites W1765014323 @default.
- W842829644 cites W1812916330 @default.
- W842829644 cites W1813271084 @default.
- W842829644 cites W1892291089 @default.
- W842829644 cites W1964826896 @default.
- W842829644 cites W1965065197 @default.
- W842829644 cites W1965246637 @default.
- W842829644 cites W1967387782 @default.
- W842829644 cites W1967546560 @default.
- W842829644 cites W1968769959 @default.
- W842829644 cites W1971361630 @default.
- W842829644 cites W1971818177 @default.
- W842829644 cites W1972660489 @default.
- W842829644 cites W1976697697 @default.
- W842829644 cites W1977325698 @default.
- W842829644 cites W1981533389 @default.
- W842829644 cites W1982587570 @default.
- W842829644 cites W1984080039 @default.
- W842829644 cites W1985434486 @default.
- W842829644 cites W1986215112 @default.
- W842829644 cites W1989984435 @default.
- W842829644 cites W1990565272 @default.
- W842829644 cites W1991579759 @default.
- W842829644 cites W1992800043 @default.
- W842829644 cites W1993454521 @default.
- W842829644 cites W1998985069 @default.
- W842829644 cites W1999396007 @default.
- W842829644 cites W2003779279 @default.
- W842829644 cites W2004008828 @default.
- W842829644 cites W2005485907 @default.
- W842829644 cites W2007044730 @default.
- W842829644 cites W2007342225 @default.
- W842829644 cites W2007516388 @default.
- W842829644 cites W2007940480 @default.
- W842829644 cites W2008006594 @default.
- W842829644 cites W2008378335 @default.
- W842829644 cites W2009545408 @default.
- W842829644 cites W2013195123 @default.
- W842829644 cites W2014767497 @default.
- W842829644 cites W2016341899 @default.
- W842829644 cites W2018547288 @default.
- W842829644 cites W2019062750 @default.
- W842829644 cites W2020913456 @default.
- W842829644 cites W2027039181 @default.
- W842829644 cites W2028357390 @default.
- W842829644 cites W2029538739 @default.
- W842829644 cites W2030295282 @default.
- W842829644 cites W2033480692 @default.
- W842829644 cites W2034175063 @default.
- W842829644 cites W2041862945 @default.
- W842829644 cites W2043399762 @default.
- W842829644 cites W2044343300 @default.
- W842829644 cites W2045652876 @default.
- W842829644 cites W2047230132 @default.
- W842829644 cites W2047637845 @default.
- W842829644 cites W2049689864 @default.
- W842829644 cites W2050285203 @default.
- W842829644 cites W2050459520 @default.
- W842829644 cites W2051856222 @default.
- W842829644 cites W2052533725 @default.
- W842829644 cites W2054396313 @default.
- W842829644 cites W2054603212 @default.
- W842829644 cites W2055721472 @default.
- W842829644 cites W2057826895 @default.
- W842829644 cites W2059608229 @default.
- W842829644 cites W2059958442 @default.
- W842829644 cites W2061513598 @default.
- W842829644 cites W2061987651 @default.
- W842829644 cites W2063375015 @default.