Matches in SemOpenAlex for { <https://semopenalex.org/work/W844253406> ?p ?o ?g. }
- W844253406 endingPage "192" @default.
- W844253406 startingPage "172" @default.
- W844253406 abstract "In the multidisciplinary field of heart research it is of utmost importance to identify accurate myocardium material properties for the description of phenomena such as mechano-electric feedback or heart wall thickening. A rationally-based material model is required to understand the highly nonlinear mechanics of complex structures such as the passive myocardium under different loading conditions. Unfortunately, to date there are no experimental data of human heart tissues available to estimate material parameters and to develop adequate material models. This study aimed to determine biaxial extension and triaxial shear properties and the underlying microstructure of the passive human ventricular myocardium. Using new state-of-the-art equipment, planar biaxial extension tests were performed to determine the biaxial extension properties of the passive ventricular human myocardium. Shear properties of the myocardium were examined by triaxial simple shear tests performed on small cubic specimens excised from an adjacent region of the biaxial extension specimens. The three-dimensional microstructure was investigated through second-harmonic generation (SHG) microscopy on optically cleared tissues, which emphasized the 3D orientation and dispersion of the myofibers and adjacent collagen fabrics. The results suggest that the passive human LV myocardium under quasi-static and dynamic multiaxial loadings is a nonlinear, anisotropic (orthotropic), viscoelastic and history-dependent soft biological material undergoing large deformations. Material properties of the tissue components along local microstructural axes drive the nonlinear and orthotropic features of the myocardium. SHG microscopy investigation revealed detailed information about the myocardial microstructure due to its high resolution. It enabled the identification of structural parameters such as the fiber and the sheet orientations and corresponding dispersions. With this complete set of material data, a sophisticated material model and associated material parameters can be defined for a better description of the biomechanical response of the ventricular myocardium in humans. Such a model will lead to more accurate computational simulations to better understand the fundamental underlying ventricular mechanics, a step needed in the improvement of medical treatment of heart diseases.Unfortunately, to date there are no experimental data of human heart tissues available for material parameter estimation and the development of adequate material models. In this manuscript novel biaxial tensile and shear test data at different specimen orientations are presented, which allowed to adequately capture the direction-dependent material response. With these complete sets of mechanical data, combined with their underlying microstructural data (also presented herein), sophisticated material models and associated material parameters can be defined for the description of the mechanical behavior of the ventricular myocardium in humans. Such models will lead to accurate computational simulations to better understand the fundamental underlying ventricular mechanics, a step needed in the improvement of medical treatment of heart diseases." @default.
- W844253406 created "2016-06-24" @default.
- W844253406 creator A5006819872 @default.
- W844253406 creator A5023780626 @default.
- W844253406 creator A5046202288 @default.
- W844253406 creator A5050505742 @default.
- W844253406 creator A5052701354 @default.
- W844253406 creator A5077458396 @default.
- W844253406 creator A5084042152 @default.
- W844253406 date "2015-09-01" @default.
- W844253406 modified "2023-10-10" @default.
- W844253406 title "Biomechanical properties and microstructure of human ventricular myocardium" @default.
- W844253406 cites W1550726172 @default.
- W844253406 cites W1597764244 @default.
- W844253406 cites W1958517702 @default.
- W844253406 cites W1968912899 @default.
- W844253406 cites W1969904397 @default.
- W844253406 cites W1971481651 @default.
- W844253406 cites W1982886609 @default.
- W844253406 cites W1984933367 @default.
- W844253406 cites W1986005020 @default.
- W844253406 cites W1986967085 @default.
- W844253406 cites W1989469359 @default.
- W844253406 cites W1989918629 @default.
- W844253406 cites W1990401509 @default.
- W844253406 cites W1990764537 @default.
- W844253406 cites W1990850630 @default.
- W844253406 cites W2006111226 @default.
- W844253406 cites W2009129436 @default.
- W844253406 cites W2010286835 @default.
- W844253406 cites W2010777408 @default.
- W844253406 cites W2016132474 @default.
- W844253406 cites W2026327114 @default.
- W844253406 cites W2031792977 @default.
- W844253406 cites W2033450136 @default.
- W844253406 cites W2035456258 @default.
- W844253406 cites W2036244572 @default.
- W844253406 cites W2043938150 @default.
- W844253406 cites W2046412711 @default.
- W844253406 cites W2047759315 @default.
- W844253406 cites W2061329889 @default.
- W844253406 cites W2062424181 @default.
- W844253406 cites W2071259179 @default.
- W844253406 cites W2078382906 @default.
- W844253406 cites W2080087130 @default.
- W844253406 cites W2085273810 @default.
- W844253406 cites W2088401784 @default.
- W844253406 cites W2089837717 @default.
- W844253406 cites W2090674232 @default.
- W844253406 cites W2094344984 @default.
- W844253406 cites W2095246855 @default.
- W844253406 cites W2097505884 @default.
- W844253406 cites W2097999461 @default.
- W844253406 cites W2100616946 @default.
- W844253406 cites W2100968871 @default.
- W844253406 cites W2102339840 @default.
- W844253406 cites W2104564488 @default.
- W844253406 cites W2110256784 @default.
- W844253406 cites W2116463491 @default.
- W844253406 cites W2117433444 @default.
- W844253406 cites W2126617987 @default.
- W844253406 cites W2129962922 @default.
- W844253406 cites W2130899200 @default.
- W844253406 cites W2132135840 @default.
- W844253406 cites W2134208433 @default.
- W844253406 cites W2134734870 @default.
- W844253406 cites W2135781034 @default.
- W844253406 cites W2135933070 @default.
- W844253406 cites W2136267171 @default.
- W844253406 cites W2139154829 @default.
- W844253406 cites W2144796862 @default.
- W844253406 cites W2148646485 @default.
- W844253406 cites W2153420830 @default.
- W844253406 cites W2153797429 @default.
- W844253406 cites W2153855051 @default.
- W844253406 cites W2154306328 @default.
- W844253406 cites W2154789192 @default.
- W844253406 cites W2156908140 @default.
- W844253406 cites W2166739553 @default.
- W844253406 cites W2166869464 @default.
- W844253406 cites W2168324813 @default.
- W844253406 cites W2170989552 @default.
- W844253406 cites W2258790163 @default.
- W844253406 cites W2421844870 @default.
- W844253406 doi "https://doi.org/10.1016/j.actbio.2015.06.031" @default.
- W844253406 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26141152" @default.
- W844253406 hasPublicationYear "2015" @default.
- W844253406 type Work @default.
- W844253406 sameAs 844253406 @default.
- W844253406 citedByCount "196" @default.
- W844253406 countsByYear W8442534062015 @default.
- W844253406 countsByYear W8442534062016 @default.
- W844253406 countsByYear W8442534062017 @default.
- W844253406 countsByYear W8442534062018 @default.
- W844253406 countsByYear W8442534062019 @default.
- W844253406 countsByYear W8442534062020 @default.
- W844253406 countsByYear W8442534062021 @default.
- W844253406 countsByYear W8442534062022 @default.