Matches in SemOpenAlex for { <https://semopenalex.org/work/W844364993> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W844364993 abstract "The scope of this thesis is to propose new inferential tools, based on diffusion process approximations, for the study of the kinetic parameters in auto-regulatory networks. In the first part of this thesis, we study the applicability of the EA methodology to Stochastic Differential Equations (SDEs) which approximate biological systems. In principle EA can be applied to any scalar-valued SDE as long as a transformation (known as Lamperti transform) exists that sets the (new) infinitesimal variance to unity. We explore the numerical limitations of this requirement by considering a biological system that can be expressed as a scalar non-linear SDE. Next, we consider the multidimensional extension of this transformation and we show, with a counterexample, that EA can be applied to a class of SDEs which is wider than the class of reducible diffusions. In the second part of this thesis, we proposed a reparametrization of the kinetic constants that leads to an approximation known as the Linear Noise approximation (LNA). We prove that LNA converges to a linear SDE, as the size of the biological system increases. Since the LNA is a linear SDE, it has a known transition density with parameters given as the solutions of a system of Ordinary Differential Equations (ODEs) which are usually obtained numerically. Furthermore, we compare the LNA's simulation performance to the performance of other (approximate and exact) methods under different modelling scenarios and we relate the performance of the approximate methods to the system size. In addition, we consider LNA as an inferential tool and we use two methods, the Restarting (RE), which we propose, and the Non-Restarting (NR) method, proposed by Komorowski et. al. (2009) to derive the LNA's likelihood. The two methods differ on the initial conditions that they pose in order to solve the underlying ODEs. We compare the performance of the two methods by considering data generated under different scenarios. Finally, we discuss the lnar, a package for the R statistical environment, that we developed to implement the LNA methodology." @default.
- W844364993 created "2016-06-24" @default.
- W844364993 creator A5001431184 @default.
- W844364993 date "2010-09-17" @default.
- W844364993 modified "2023-09-23" @default.
- W844364993 title "Inference for auto-regulatory genetic networks using diffusion process approximations" @default.
- W844364993 hasPublicationYear "2010" @default.
- W844364993 type Work @default.
- W844364993 sameAs 844364993 @default.
- W844364993 citedByCount "0" @default.
- W844364993 crossrefType "dissertation" @default.
- W844364993 hasAuthorship W844364993A5001431184 @default.
- W844364993 hasConcept C104317684 @default.
- W844364993 hasConcept C118615104 @default.
- W844364993 hasConcept C126255220 @default.
- W844364993 hasConcept C134306372 @default.
- W844364993 hasConcept C162838799 @default.
- W844364993 hasConcept C185592680 @default.
- W844364993 hasConcept C204241405 @default.
- W844364993 hasConcept C2524010 @default.
- W844364993 hasConcept C28826006 @default.
- W844364993 hasConcept C33923547 @default.
- W844364993 hasConcept C34862557 @default.
- W844364993 hasConcept C51544822 @default.
- W844364993 hasConcept C51955184 @default.
- W844364993 hasConcept C55493867 @default.
- W844364993 hasConcept C57691317 @default.
- W844364993 hasConcept C60391097 @default.
- W844364993 hasConcept C78045399 @default.
- W844364993 hasConcept C91229774 @default.
- W844364993 hasConceptScore W844364993C104317684 @default.
- W844364993 hasConceptScore W844364993C118615104 @default.
- W844364993 hasConceptScore W844364993C126255220 @default.
- W844364993 hasConceptScore W844364993C134306372 @default.
- W844364993 hasConceptScore W844364993C162838799 @default.
- W844364993 hasConceptScore W844364993C185592680 @default.
- W844364993 hasConceptScore W844364993C204241405 @default.
- W844364993 hasConceptScore W844364993C2524010 @default.
- W844364993 hasConceptScore W844364993C28826006 @default.
- W844364993 hasConceptScore W844364993C33923547 @default.
- W844364993 hasConceptScore W844364993C34862557 @default.
- W844364993 hasConceptScore W844364993C51544822 @default.
- W844364993 hasConceptScore W844364993C51955184 @default.
- W844364993 hasConceptScore W844364993C55493867 @default.
- W844364993 hasConceptScore W844364993C57691317 @default.
- W844364993 hasConceptScore W844364993C60391097 @default.
- W844364993 hasConceptScore W844364993C78045399 @default.
- W844364993 hasConceptScore W844364993C91229774 @default.
- W844364993 hasLocation W8443649931 @default.
- W844364993 hasOpenAccess W844364993 @default.
- W844364993 hasPrimaryLocation W8443649931 @default.
- W844364993 hasRelatedWork W1715588140 @default.
- W844364993 hasRelatedWork W1971241613 @default.
- W844364993 hasRelatedWork W1982273773 @default.
- W844364993 hasRelatedWork W2055621683 @default.
- W844364993 hasRelatedWork W2066010991 @default.
- W844364993 hasRelatedWork W2074212393 @default.
- W844364993 hasRelatedWork W2184500934 @default.
- W844364993 hasRelatedWork W2221189919 @default.
- W844364993 hasRelatedWork W2614367992 @default.
- W844364993 hasRelatedWork W2770073272 @default.
- W844364993 hasRelatedWork W2771932385 @default.
- W844364993 hasRelatedWork W2786199625 @default.
- W844364993 hasRelatedWork W2885719351 @default.
- W844364993 hasRelatedWork W2952178693 @default.
- W844364993 hasRelatedWork W2966193881 @default.
- W844364993 hasRelatedWork W2969009390 @default.
- W844364993 hasRelatedWork W3043025098 @default.
- W844364993 hasRelatedWork W3128147460 @default.
- W844364993 hasRelatedWork W3204582391 @default.
- W844364993 hasRelatedWork W64335235 @default.
- W844364993 isParatext "false" @default.
- W844364993 isRetracted "false" @default.
- W844364993 magId "844364993" @default.
- W844364993 workType "dissertation" @default.