Matches in SemOpenAlex for { <https://semopenalex.org/work/W846519969> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W846519969 endingPage "103" @default.
- W846519969 startingPage "85" @default.
- W846519969 abstract "Template attacks and stochastic models are among the most powerful side-channel attacks. However, they can be computationally expensive when processing a large number of samples. Various compression techniques have been used very successfully to reduce the data dimensionality prior to applying template attacks, most notably Principal Component Analysis (PCA) and Fisher’s Linear Discriminant Analysis (LDA). These make the attacks more efficient computationally and help the profiling phase to converge faster. We show how these ideas can also be applied to implement stochastic models more efficiently, and we also show that they can be applied and evaluated even for more than eight unknown data bits at once." @default.
- W846519969 created "2016-06-24" @default.
- W846519969 creator A5021151000 @default.
- W846519969 creator A5066451795 @default.
- W846519969 date "2015-01-01" @default.
- W846519969 modified "2023-10-16" @default.
- W846519969 title "Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits" @default.
- W846519969 cites W1412796964 @default.
- W846519969 cites W1499081748 @default.
- W846519969 cites W1514899339 @default.
- W846519969 cites W1560022750 @default.
- W846519969 cites W1580550895 @default.
- W846519969 cites W1797487015 @default.
- W846519969 cites W1890612873 @default.
- W846519969 cites W1943109301 @default.
- W846519969 cites W2118442521 @default.
- W846519969 cites W2914572864 @default.
- W846519969 doi "https://doi.org/10.1007/978-3-319-16763-3_6" @default.
- W846519969 hasPublicationYear "2015" @default.
- W846519969 type Work @default.
- W846519969 sameAs 846519969 @default.
- W846519969 citedByCount "8" @default.
- W846519969 countsByYear W8465199692016 @default.
- W846519969 countsByYear W8465199692018 @default.
- W846519969 countsByYear W8465199692019 @default.
- W846519969 countsByYear W8465199692020 @default.
- W846519969 countsByYear W8465199692021 @default.
- W846519969 countsByYear W8465199692022 @default.
- W846519969 crossrefType "book-chapter" @default.
- W846519969 hasAuthorship W846519969A5021151000 @default.
- W846519969 hasAuthorship W846519969A5066451795 @default.
- W846519969 hasBestOaLocation W8465199692 @default.
- W846519969 hasConcept C41008148 @default.
- W846519969 hasConceptScore W846519969C41008148 @default.
- W846519969 hasLocation W8465199691 @default.
- W846519969 hasLocation W8465199692 @default.
- W846519969 hasLocation W8465199693 @default.
- W846519969 hasOpenAccess W846519969 @default.
- W846519969 hasPrimaryLocation W8465199691 @default.
- W846519969 hasRelatedWork W2093578348 @default.
- W846519969 hasRelatedWork W2350741829 @default.
- W846519969 hasRelatedWork W2358668433 @default.
- W846519969 hasRelatedWork W2376932109 @default.
- W846519969 hasRelatedWork W2382290278 @default.
- W846519969 hasRelatedWork W2390279801 @default.
- W846519969 hasRelatedWork W2748952813 @default.
- W846519969 hasRelatedWork W2766271392 @default.
- W846519969 hasRelatedWork W2899084033 @default.
- W846519969 hasRelatedWork W3004735627 @default.
- W846519969 isParatext "false" @default.
- W846519969 isRetracted "false" @default.
- W846519969 magId "846519969" @default.
- W846519969 workType "book-chapter" @default.