Matches in SemOpenAlex for { <https://semopenalex.org/work/W846937175> ?p ?o ?g. }
- W846937175 abstract "This thesis presents a framework for the detection and diagnosis of vascular lesions with a special emphasis on coronary heart disease. Coronary heart disease remains to be the first cause of mortality worldwide. Typically, the problem of vascular lesion identification has been solved by trying to model the abnormalities (lesions). The main drawback of this approach is that lesions are highly heterogeneous, which makes the detection of previously unseen abnormalities difficult. We have selected not to model lesions directly, but to treat them as anomalies which are seen as low probability density points. We propose the use of two classification frameworks based on support vector machines (SVM) for the density level detection problem. The main advantage of these two methods is that the learning stage does not require labeled data representing lesions, which is always difficult to obtain. The first method is completely unsupervised, whereas the second one only requires a limited number of labels for normality. The use of these anomaly detection algorithms requires the use of features such that anomalies are represented as points with low probability density. For this purpose, we developed an intensity based metric, denoted concentric rings, designed to capture the nearly symmetric intensity profiles of healthy vessels, as well as discrepancies with respect to the normal behavior. Moreover, we have selected a large set of alternative candidate features to use as input for the classifiers. Experiments on synthetic data and cardiac CT data demonstrated that our metric has a good performance in the detection of anomalies, when used with the selected classifiers. Combination of other features with the concentric rings metric has potential to improve the classification performance. We defined an unsupervised feature selection scheme that allows the definition of an optimal subset of features. We compared it with existent supervised feature selection methods. These experiments showed that, in general, the combination of features improves the classifiers performance, and that the best results are achieved with the combination selected by our scheme, associated with the proposed anomaly detection algorithms. Finally, we propose to use image registration in order to compare the classification results at different cardiac phases. The objective here is to match the regions detected as anomalous in different time-frames. In this way, more than attract the physician's attention to the anomaly detected as potential lesion, we want to aid in validating the diagnosis by automatically displaying the same suspected region reconstructed in different time-frames" @default.
- W846937175 created "2016-06-24" @default.
- W846937175 creator A5087646809 @default.
- W846937175 date "2011-01-12" @default.
- W846937175 modified "2023-09-24" @default.
- W846937175 title "Methods for automation of vascular lesions detection in computed tomography images" @default.
- W846937175 cites W123457509 @default.
- W846937175 cites W1265468362 @default.
- W846937175 cites W1484777458 @default.
- W846937175 cites W1495971627 @default.
- W846937175 cites W1499399937 @default.
- W846937175 cites W1531977904 @default.
- W846937175 cites W1563938718 @default.
- W846937175 cites W1571036400 @default.
- W846937175 cites W1576682652 @default.
- W846937175 cites W1577086545 @default.
- W846937175 cites W1583737440 @default.
- W846937175 cites W1590113844 @default.
- W846937175 cites W1600600843 @default.
- W846937175 cites W1604615266 @default.
- W846937175 cites W1864859666 @default.
- W846937175 cites W1874027545 @default.
- W846937175 cites W1965525415 @default.
- W846937175 cites W1968264118 @default.
- W846937175 cites W1970655212 @default.
- W846937175 cites W1975879668 @default.
- W846937175 cites W1976077990 @default.
- W846937175 cites W1983099920 @default.
- W846937175 cites W1984935043 @default.
- W846937175 cites W1988790447 @default.
- W846937175 cites W1998539068 @default.
- W846937175 cites W2001484348 @default.
- W846937175 cites W2005476680 @default.
- W846937175 cites W2005554128 @default.
- W846937175 cites W2007087405 @default.
- W846937175 cites W2013628485 @default.
- W846937175 cites W2017337590 @default.
- W846937175 cites W2028515804 @default.
- W846937175 cites W2031223640 @default.
- W846937175 cites W2034432063 @default.
- W846937175 cites W2046322851 @default.
- W846937175 cites W2053154970 @default.
- W846937175 cites W2066993558 @default.
- W846937175 cites W2095345875 @default.
- W846937175 cites W2096682736 @default.
- W846937175 cites W2098979973 @default.
- W846937175 cites W2100749674 @default.
- W846937175 cites W2101689475 @default.
- W846937175 cites W2102722862 @default.
- W846937175 cites W2103116581 @default.
- W846937175 cites W2103219523 @default.
- W846937175 cites W2104355613 @default.
- W846937175 cites W2105731688 @default.
- W846937175 cites W2107956652 @default.
- W846937175 cites W2113576511 @default.
- W846937175 cites W2115996640 @default.
- W846937175 cites W2116120292 @default.
- W846937175 cites W2119479037 @default.
- W846937175 cites W2119821739 @default.
- W846937175 cites W2120487958 @default.
- W846937175 cites W2122646361 @default.
- W846937175 cites W2129534965 @default.
- W846937175 cites W2131142580 @default.
- W846937175 cites W2132870739 @default.
- W846937175 cites W2133287637 @default.
- W846937175 cites W2133584444 @default.
- W846937175 cites W2134756983 @default.
- W846937175 cites W2135346934 @default.
- W846937175 cites W2137130182 @default.
- W846937175 cites W2139212933 @default.
- W846937175 cites W2141104431 @default.
- W846937175 cites W2143232564 @default.
- W846937175 cites W2143426320 @default.
- W846937175 cites W2145004829 @default.
- W846937175 cites W2145382253 @default.
- W846937175 cites W2147950119 @default.
- W846937175 cites W2149307753 @default.
- W846937175 cites W2149620660 @default.
- W846937175 cites W2149949137 @default.
- W846937175 cites W2151081836 @default.
- W846937175 cites W2153635508 @default.
- W846937175 cites W2154053567 @default.
- W846937175 cites W2157380596 @default.
- W846937175 cites W2163695678 @default.
- W846937175 cites W2164777277 @default.
- W846937175 cites W2165023525 @default.
- W846937175 cites W2169146573 @default.
- W846937175 cites W2170488197 @default.
- W846937175 cites W2171750292 @default.
- W846937175 cites W2230085180 @default.
- W846937175 cites W2460226205 @default.
- W846937175 cites W2596229607 @default.
- W846937175 cites W2885041036 @default.
- W846937175 cites W2911964244 @default.
- W846937175 cites W5403265 @default.
- W846937175 cites W70551643 @default.
- W846937175 cites W818879217 @default.
- W846937175 cites W86020511 @default.
- W846937175 cites W2155107509 @default.
- W846937175 hasPublicationYear "2011" @default.